
GUIDED CLOSE RANGE PHOTOGRAMMETRY FOR 
3D MODELLING OF CULTURAL HERITAGE SITES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bashar Saleem Abbas Alsadik 
  



Examining committee: 
 
Prof.dr.ir. A. Stein   University of Twente 
Dr. A.A. Voinov    University of Twente 
Prof.dr.-lng. P. Grussenmeyer  INSA Strasbourg  
Prof.dr. J. Mills    Newcastle University 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ITC dissertation number 260 
ITC, P.O. Box 217, 7500 AE Enschede, The Netherlands 
 
 
ISBN 978-90-365-3793-3 
DOI 10.3990/1.9789036537933 
Cover designed by Job Duim 
Printed by ITC Printing Department 
Copyright © 2014 by B.S.A. Alsadik 
 
 

 



GUIDED CLOSE RANGE PHOTOGRAMMETRY FOR 
3D MODELLING OF CULTURAL HERITAGE SITES 

 
 
 
 
 
 
 
 
 
 

DISSERTATION 
 
 
 
 
 
 
 

to obtain 
the degree of doctor at the University of Twente, 

on the authority of the rector magnificus, 
prof.dr. H. Brinksma, 

on account of the decision of the graduation committee, 
to be publicly defended 

on Friday 21st November 2014 at 12:45 hrs 
 
 
 
 
 
 
 
 
 
 

by 
 

Bashar Saleem Abbas Alsadik 
 

born on July 01,1970 
 

in Babylon, Iraq 
 



This thesis is approved by 
Prof.dr.ir. M.G. Vosselman, promoter 
Dr. M. Gerke, co-promoter 
  



 

 

 

To my family 
  



 
 



Acknowledgements 
After a long time of waiting, suffer, and hard work I am reaching my dream 
to have the PhD. degree. This was not possible to become a truth without the 
contribution of many people in my life who deserve to be acknowledged here. 
 
I gratefully acknowledge my promoter Prof. George Vosselman for giving me 
the opportunity to join his group TOPMAP and to be one of his students. 
During the four years of research, he was very noble, positive, and 
understanding.   
 
My deep thanks to my daily supervisor Dr. Markus Gerke. The research 
journey started in 2010 with him and he put a great effort and help to figure 
out together the possible research topic. Later, during the research years, 
Markus was a great supervisor and friend.  
 
My sincere acknowledgment to the University Assistance Fund UAF and 
Scholars At Risk SAR. They gave me a great support during my stay in the 
Netherlands.  
 
My gratitude to the University of Twente UT for offering me the position of 
promovendus (Aio) during the four years of my research.   
 
I introduce my acknowledgment to ITC - EOS department staff members, 
especially Teresa Brefeld who showed a great help and support during my 
stay and Mila Koeva who kindly designed the thesis cover. 
 
I would also like to introduce my thanks to all my colleagues in ITC and 
particularly Yaseen Taha (Iraq), Juan Pablo (Colombia), Jing Xiao (China), 
Ahmed A. Ibrahim (Egypt), Biao Xiong (China), Sudan Xu (China), MengMeng 
Li (China), Adugna Mullissa (Ethiopia), Anand Vetrivel (India), Dimo 
Todorovski (Macedonia).  
 
I extend my thanks to the members of 3DOM – FBK in Italy, namely, Fabio 
Remondino, Francesco Nex, Fabio Menna, and Erica Nocerino. 
 
Importantly, I can never express my deepest gratitude to my wife, sons, 
parents, brothers and sisters for their limitless love and support over the 
years.  
This thesis is dedicated to my family.  
 
  

i 



  

ii 



Table of contents 
Acknowledgements ................................................................................ i 
Table of contents .................................................................................. iii 
List of figures ...................................................................................... vi 
List of tables........................................................................................ xii 
 
Chapter 1 Introduction ..................................................................... 1 

1.1 Preface ................................................................................... 1 
1.2 Research problem .................................................................... 6 
1.3 Research objectives ................................................................. 9 
1.4 Scope  and limitations ............................................................ 11 
1.5 Innovations in this work ......................................................... 11 
1.6 Thesis Outline ....................................................................... 12 

 
Chapter 2 Literature Review ........................................................... 13 

2.1 Design (sensor and network geometry) .................................... 13 
2.2 Three Dimensional Measurements And Reconstruction ................ 15 

2.2.1 Structure from Motion (SfM) ............................................ 15 
2.2.2 Dense Matching .............................................................. 16 
2.2.3 Modelling and Texturing .................................................. 17 

2.3 State-of-the-art software in reality IBM .................................... 18 
2.4 Shortcoming in the IBM State-of-the-art ................................... 20 
2.5 Visibility ................................................................................ 21 

2.5.1 Surface triangulation based methods ................................ 23 
2.5.2 Voxel based approach ..................................................... 25 
2.5.3 Hidden point removal (HPR) ............................................. 26 

 
Chapter 3 Overview of Methodology ................................................. 29 

3.1 Camera network design .......................................................... 30 
3.2 Guiding the image capture ...................................................... 30 
3.3 Guiding the image tie points matching ...................................... 31 
3.4 Detection and recovery of gaps in the 3D point cloud ................. 32 

 
Chapter 4 Camera Network Design .................................................. 35 

4.1 Initial point cloud ................................................................... 36 
4.2 The subdivision of the point cloud and camera domain ............... 37 

4.2.1 The identification of imaging location ................................ 39 
4.2.2 The camera domain placement ......................................... 40 
4.2.3 The subdivision into facades............................................. 41 

4.3 Initial camera network design in blocks .................................... 44 
4.4 Connecting cameras ............................................................... 47 
4.5 Minimal camera network ......................................................... 48 

4.5.1 A minimal camera network based on filtering for coverage ... 49 

iii 



4.5.2 A minimal camera network based on the accuracy of the object 
points 50 

4.6 Visibility requirement ............................................................. 52 
4.7 Optimization technique ........................................................... 52 

4.7.1 The formulation of the camera network optimization problem54 
4.7.2 The constraints on optimum camera placement .................. 55 

4.8 Summary of methodology ....................................................... 57 
4.9 Experimental tests ................................................................. 58 

4.9.1 Simulation test ............................................................... 59 
4.9.2 Building ......................................................................... 63 
4.9.3 Statue ........................................................................... 68 
4.9.4 Discussion of results ....................................................... 71 

4.10 Summary .............................................................................. 73 
 
Chapter 5 Guided Image Capture and Post Processing ....................... 75 

5.1 Guiding the image capture ...................................................... 76 
5.1.1 Creating the synthetic images .......................................... 77 
5.1.2 Real image capture ......................................................... 80 
5.1.3 Matching between real and synthetic images ........................... 81 
5.1.4 The validation of the real captured images ......................... 83 

5.2 Post processing computations .................................................. 86 
5.2.1 Image connectivity for matching ....................................... 86 
5.2.2 Guided image matching by exploiting the object model ....... 88 

5.3 Experiment ........................................................................... 91 
5.4 Summary .............................................................................. 95 

 
Chapter 6 Gap Detection and Final Modelling .................................... 99 

6.1 Gaps possible causes .............................................................. 99 
6.1.1 The insufficient object coverage by images ....................... 100 
6.1.2 The complexity of the object itself ................................... 100 
6.1.3 The occluding objects between the camera and the object .. 101 
6.1.4 The poorly textured parts of the object ............................. 102 
6.1.5 The existence of real holes (openings) in the object ........... 102 

6.2 Gaps detection techniques ..................................................... 105 
6.2.1 2D-based processing ...................................................... 105 
6.2.2 Gap detection by voxelization .......................................... 111 

6.3 The auxiliary image capture and orientation ............................. 122 
6.4 Summary ............................................................................. 125 

 
Chapter 7 Case Study ................................................................... 127 

7.1 Referencing data................................................................... 127 
7.2 Camera network design ......................................................... 128 
7.3 Guiding the image capture ..................................................... 131 
7.4 Extraction of image correspondences....................................... 132 

iv 



7.5 Image orientation ................................................................. 135 
7.6 Gap detection and final modelling ........................................... 140 
7.7 Summary ............................................................................. 147 

 
Chapter 8 Conclusions and recommendations .................................. 149 

8.1 Conclusions .......................................................................... 149 
8.2 Recommendations................................................................. 151 

 
Appendix A ........................................................................................ 153 

A1- Optimization ............................................................................. 153 
A2- Cost function in optimal camera network design ........................... 155 

 
Bibliography ...................................................................................... 157 
List of publications ............................................................................. 164 
Summary .......................................................................................... 165 
Samenvatting .................................................................................... 167 
Curriculum Vitae ................................................................................ 169 
ITC Dissertation List ........................................................................... 170 
 
  

v 



List of figures 

1.1 Imaging geometry. (a) Small B/D ratio and large error. (b) 
Large B/D ratio and small error .............................................  2 

1.2 Automated 3D model from (37) still shot images (left) and 3D 
model from (178) video frames (right) ...................................  3 

1.3 Repetitive texture patterns affecting the tie points matching and 
leading to wrong correspondences .........................................  4 

1.4 Failure examples of SfM .......................................................  5 
1.5 Façade point cloud from the short baseline (left) and façade 

point cloud from the wide baseline (right) using Agisoft ............  6 
1.6 3D modelling of cultural heritage by imaging techniques ..........  9 
1.7 The summary of research objectives and questions ..................  11 
2.1 General techniques and state-of-the-art software for IBM .........  20 
2.2 Point cloud in an unknown looking position either forward or 

backward ............................................................................  21 
2.3 Visibility by using the triangular surface normal vectors............  23 
2.4 Visibility by testing the ray-triangle intersection ......................  24 
2.5 Depth - buffering method .....................................................  25 
2.6 Voxel-ray intersection for visibility .........................................  25 
2.7 HPR method (Katz et al. 2007) ..............................................  27 
3.1 The general methodology of the proposed camera network 

planning and guidance .........................................................  29 
3.2 The methodology of camera network design ...........................  30 
3.3 General methodology of the proposed guiding system ..............  32 
3.4 The gap detection methodology .............................................  33 
4.1 The general methodology of camera network design ................  36 
4.2 Initial point clouds and video track.........................................  37 
4.3 (a) Subdivide the building point cloud into its facades. (b) Two 

types of camera networks for a U-shaped building with the 
subdivision into facades and the inefficient ring network design .  38 

4.4 Workflow of finding the camera domain of a rough cloud of a 
building ..............................................................................  39 

4.5 Identification of cameras to be placed inside or outside the 
building.(a) Inward camera domain (R>r). (b) Outward camera 
domain (R<r) ......................................................................  39 

4.6 The angular orientation of suitable camera domains for. (a) 
Outward camera domain object. (b) Inward camera domain .....  40 

4.7 The camera circular domain for statues and monuments ..........  40 
4.8 Point cloud subdivision methodology ......................................  41 
4.9 Edges extraction by testing the normal...................................  42 
4.10 Point cloud subdivision technique ...........................................  43 

vi 



4.11 Surface normals are used to avoid interference of sub-clouds ....  43 
4.12 Photo layout for standard ordered-block in terrestrial 

photogrammetry ..................................................................  44 
4.13 The relation between the camera accessible heights and object 

height .................................................................................  45 
4.14 Camera and object coordinate systems ...................................  47 
4.15 Connecting camera placement around a building and its 

importance for 3D modelling ..................................................  48 
4.16 The minimal camera network in the general workflow of design 49 
4.17 The concept of filtering redundant camera. (a) Before filtering. 

(b) After filtering. (c) Number of covering cameras before and 
after the filtering ..................................................................  49 

4.18 The workflow diagram of filtering for coverage or accuracy 
requirements .......................................................................  51 

4.19 The effect of visibility analysis on the design. (a) A simple 
building framework with normals. (b) The dense network 
configuration. (c) Minimal network with visibility test. (d) 
Minimal network without visibility test .....................................  52 

4.20 The workflow of the optimization computations ........................  53 
4.21 The bounding limits of the optimal camera orientation ..............  56 
4.22 The general workflow of the camera network design .................  58 
4.23 A simulated dense camera network .........................................  59 
4.24 (a) The point precision before optimization. (b) The point 

precision after optimization. (c) The convergence of solution of 
optimization. (d) The number of the covering cameras before 
and after the optimization ......................................................  60 

4.25 The simulation of the filtered imaging network and results of 
filtering and optimization. (a) Filtered net for coverage. (b) 
Optimal net. (c) Optimization run plot. (d) The number of the 
covering cameras before and after the optimization ..................  61 

4.26 (a) The error after the filtering for accuracy. (b) The error after 
the optimization. (c) The convergence of solution of 
optimization. (d) The frequency of covering cameras before and 
after the optimization ............................................................  62 

4.27 Video stream for a building (sample images) ............................  63 
4.28 (a) The video imaging track around the building. (b) The 

derived rough model and mesh. (c) The image morphological 
operation before filtering. (d) Subdivision result .......................  63 

4.29 The building initial dense imaging block before filtration ............  64 
4.30 Imaging network configuration of the building. (a) Filtered 

network for coverage. (b) Filtered network for accuracy. (c) 
Optimal network ...................................................................  65 

  

vii 



4.31 The exaggerated error ellipsoid plot for the building experiment. 
(a) Dense network. (b) Filtered network for coverage. (c) 
Filtered network for accuracy. (d) Optimal network ..................  66 

4.32 Log plot of optimization runs for each detected façade of the 
building ..............................................................................  67 

4.33 The number of the viewing cameras per point. (a) The coverage 
in the dense network. (b) The coverage of the filtered network. 
(c) The coverage of the optimal network ................................  67 

4.34 (a) Statue surface mesh. (b) The dense imaging block .............  69 
4.35 Statue imaging network. (a) Minimal network before 

optimization. (b) After optimization ........................................  69 
4.36 The error ellipsoids for the statue points in three cases. (a) 

Dense network. (b) Filtered network. (c) Optimal network ........  70 
4.37 Log plot of optimization runs of the statue imaging ..................  71 
4.38 The number of viewing cameras for each object point. (a) Dense 

network. (b) Filtered network. (c) Optimized network ..............  71 
5.1 Workflow of the guiding imaging system .................................  77 
5.2 Low-detailed 3D textured model ............................................  78 
5.3 Texture transfer of synthetic images ......................................  79 
5.4 Removing occluded pixel values by distance buffering ..............  79 
5.5 Synthetic image creation with and without self-occlusion 

computation ........................................................................  80 
5.6 Software-hardware illustration of the guiding system ...............  81 
5.7 Restriction of the matching space. Left: SIFT points in synthetic 

image. Right: Restricted SIFT points in real image ...................  82 
5.8 SIFT matching between real and synthetic images ...................  82 
5.9 The refined points matching between synthetic and real image .  83 
5.10 Space coordinates interpolation of the matching points. (a) The 

surface mesh projected on the synthetic image. (b) The 
coordinates interpolation ......................................................  84 

5.11 The space resection of the real-captured image .......................  85 
5.12 The validation of the real captured image workflow ..................  85 
5.13 The guiding system and validation .........................................  86 
5.14 a) The image connectivity graph. (b) The matching matrix. (c) 

The pre-planned network of 106 images .................................  87 
5.15 Mismatching in the full pairwise approach leads to unsuccessful 

orientation. (a) The image pair. (b) Full pairwise approach 
(VSfM). (c) Guided approach (VSfM) ......................................  88 

5.16 Keypoint estimation in high resolution images .........................  89 
5.17 The guided matching methodology by exploiting the 3D model ..  90 
5.18 The camera network design of a monument. (a) Dense network. 

(b) Filtered network from two views .......................................  91 
5.19 (a) The synthetic images of the monument. (b) The real 

captured images ..................................................................  92 
  

viii 



5.20 The oriented monument images shown in the web service of 
Photosynth .........................................................................  92 

5.21 The histogram chart of the processing time for the full pairwise 
and the guided matching ......................................................  93 

5.22 Four-image sample set .........................................................  93 
5.23 Comparison of error ellipsoids. (a) SIFT matching. (b) SURF 

matching. (c) NCC matching .................................................  94 
5.24 (a) Guided matching results in 15 oriented images. (b) Smart 

match (Photomodeler) results in 14 oriented images ................  95 
5.25 (a) No. of oriented images. (b) No. of tie points. (c) The 

average point marking residuals [pixels]. (d) Average point 
precisions [m] .....................................................................  95 

6.1 Obscured areas from street level view ....................................  100 
6.2 Gaps caused by object complexity a) Gaps due to self-

occlusions. (b) Gaps due to protrusions ..................................  101 
6.3 Gaps due to occlusions .........................................................  102 
6.4 Gaps due to textureless objects .............................................  102 
6.5 Gaps due to openings ...........................................................  103 
6.6 The effect of occlusions on the completeness of the final 3d 

point cloud..........................................................................  103 
6.7 The effect of textureless parts, openings and self occlusion on 

the completeness of the final 3D point cloud ...........................  104 
6.8 The effect of protrusions on the completeness of the final 3d 

point cloud..........................................................................  105 
6.9 Triangulated surface mesh for gap detection. (a) Building with 

openings. (b) Facade with occluded gaps ................................  106 
6.10 Image morphology on the raster image of the projected point 

cloud. (a) Original image. (b) BW image of the PC. (c) Image 
closing with disk SE. (d) Image closing with line SE .................  107 

6.11 Methodology of 2D-based gap detection .................................  108 
6.12 The 2D-based gap detection experiment. (a) Projecting the 

point cloud to the images. (b) Gap detection technique. (c) The 
3d projected gap points ........................................................  109 

6.13 Façade dense point cloud ......................................................  110 
6.14 The gap detection in a building stairs .....................................  110 
6.15 The workflow of the 3D based gap detection ...........................  111 
6.16 The 3D voxelization of point cloud with 20 cm voxel side. (a) 

Point cloud. (b) Occupied voxels. (c) Empty voxels. (d) 
Combined visualization of the empty and occupied voxels .........  112 

6.17 The initial filtering of voxels. (a) Before refinement (b) After 
refinement ..........................................................................  112 

6.18 Labelling empty voxels by visibility analysis. (a) Fully occluded. 
(b) Real opening. (c) Fully visible empty voxel ........................  113 

6.19 Labelling partly occluded empty voxels by visibility analysis.      
(a) Obstacle-occlusion effect. (b) Insufficient covering cameras 
or self-occlusion ..................................................................  113 

6.20 (a) Proximity measure. (b) 3×3 neighbouring voxels ................  115 

ix 



6.21 The output results of gap detection. (a) Occupied voxels. (b) 
Empty voxels labelled according to visibility. (c) Empty voxels 
After visibility test. (d) Final filtered empty occluded voxels ......  117 

6.22 Statue dense point cloud and gaps ........................................  118 
6.23 Gap detection in a statue point cloud. (a) Occupied voxels. (b) 

Empty voxels. (c) Empty voxels After visibility test ..................  118 
6.24 Gap detection in a statue point cloud .....................................  119 
6.25 Gap detection of a façade with opening. (a) Point cloud. (b) 

Occupied voxels. (c) Empty voxels. (d) Empty and occupied 
voxels. (e) Visibility labelling. (f) Partly occluded voxels. (g) 
Empty voxels after neighbourhood analysis and filtering ...........  120 

6.26 Facade with real opening and visibility analysis result. (a) Point 
cloud. (b) Occupied voxels. (c) Empty voxels. (d) Empty and 
occupied voxels. (e) Visibility labelling. (f) Partly occluded 
voxels. (g) Final detected gaps ..............................................  121 

6.27 Image connectivity with auxiliary images ................................  123 
6.28 The dense point cloud of façade. (a) Detected gap voxels. (b) 

Dense point cloud before detection (b) dense point cloud after 
the auxiliary image capture ...................................................  124 

6.29 The dense point cloud of the statue base.  (a) The detected gap 
voxels. (b) The dense point cloud before recovery. (c) The 
dense point cloud after the auxiliary image capture shown in (d)  125 

7.1 The reference point cloud by using the terrestrial laser scanning  128 
7.2 (a) The GCPs distribution. (b) The GCP target design ...............  128 
7.3 Accuracy estimation for the imaging design ............................  129 
7.4 The rough point cloud of the church using VSfM ......................  129 
7.5 The segmentation of the church rough point cloud ...................  130 
7.6 The camera planning and optimization of the church. (a) Dense 

network. (b) Filtered network. (c) Optimal network ..................  131 
7.7 Sample of synthetic and real captured images. (a) Synthetic 

images. (b) Real images. (c) SIFT matching between the 
synthetic and captured image. (d) Space resection ..................  132 

7.8 Captured data set for the 3D modelling of the church ...............  132 
7.9 Comparison between full pairwise and guided connectivity 

graph. (a) Connectivity graph of the Pre-designed network 
(1319 matches). (b) Full pairwise connectivity graph (6903 
matches)  133 

7.10 The time consumed in full pairwise and guided matching for the 
church dataset ....................................................................  133 

7.11 Mismatching case of a repetitive pattern of the church left and 
right facades. (a) SIFT mismatching. (b) Guided approach. (c) 
Full pairwise approach ..........................................................  134 

7.12 (a) Image correspondences using our guided matching. (b) 
Image correspondences using VSFM software. (c) Image 
correspondences using Agisoft photoscan software ..................  135 

7.13 The oriented camera network by guided image correspondences 
using APERO .......................................................................  136 

7.14 The dense textured point cloud of the church using MICMAC .....  137 

x 



7.15 The first test for point cloud validation. (a) Image-based point 
cloud. (b) TLS point cloud. (c) Distance between the point 
clouds ................................................................................  138 

7.16 The second test for point cloud validation. (a) Image-based 
point cloud. (b) TLS point cloud.  (c) Distance between the point 
clouds ................................................................................  139 

7.17 The validation of the upper part of the church point cloud .........  140 
7.18 Gap detection with voxels. (a) The dense point cloud and 

occupied voxels. (b) The empty voxels are coloured according to 
visibility test. (c) Filtered voxels after visibility test and the final 
detected gaps .....................................................................  141 

7.19 The church point cloud with potential detected gaps represented 
as red voxels ......................................................................  142 

7.20  The captured auxiliary images in yellow .................................  143 
7.21 Dense point cloud illustrates the first detected gap in a column. 

(a) Before gap detection. (b) After adding the auxiliary images 
and modelling .....................................................................  144 

7.22 Dense point cloud after the second gap detection. (a) Before 
gap detection and point cloud completeness. (b) After adding 
the auxiliary images (red) and modelling ................................  145 

7.23 Dense point cloud illustrates the gap in different parts of the 
church before (left) and after (right) gap detection and point 
cloud completeness..............................................................  146 

7.24 The complete point cloud of the church from a layman camera 
height ................................................................................  152 

8.1 2D plan illustration to capture images with the suggested 
guidance ............................................................................  138 

 

xi 



List of tables  

4.1 Summary of results .........................................................  72 
5.1 The processing time for the full pairwise and the guided 

matching ...........................................................................  93 
5.2 Comparison between different guided matching operators .......  94 
6.1 Pseudo code for the visibility analysis of empty voxels ............  114 
7.1 RMSE of the GCPs and checkpoints .......................................  136 
 
 
 

xii 



 

Chapter 1 Introduction 

1.1 Preface  
The creation of realistic 3D models and their visualization is becoming more 
and more popular. They are a part of the modern digital age: see  virtual 
realities, cultural heritage documentation, geospatial applications, 3D games, 
TV/movie post-production and special effects (Quan 2010). 
 
Image – Based Modelling is the technique of creating 3D models by the 
utilization of 2D images (Remondino and El-Hakim 2006). This terminology is 
well known in computer vision and close range photogrammetry.  
 
What is of interest in photogrammetry is to reach high precision when 
compared to machine vision (Forstner 2002) while machine vision techniques 
focus on putting less limitations (for instance the use of uncalibrated camera) 
and less cost and to create those 3D models in automatic ways. 
 
However, traditional photogrammetric techniques besides using pre-
calibrated cameras (known interior orientation) are relying on good 
approximations of the unknown exterior orientation parameters. This is the 
reason why tie points can be found using relatively simple (feature-based or 
area-based) matching techniques. This is because of the significant reduction 
of the search space for corresponding features. The same holds for the 
nonlinear least-square bundle adjustment where the equation system needs 
the approximations of the unknowns. 
 
In computer vision, the calibration of interior 1nalysed1on parameters is seen 
as an integrated part of the entire workflow of orientation. This is 
accomplished by using structure from motion (SfM) technique (Dellaert et al. 
2000; Hartley and Zisserman 2004). SfM results in the self-calibration 
information, cameras exterior orientation parameters, and the 3D point 
coordinates of the tie points in the object space. However, this fully 
automated SfM technique doesn’t account for the true scale and datum 
without additional input like ground control points (GCP). 
 
The automated orientation of images in SfM is basically dependent on 
digitally detecting the homologous points in the overlapping images. 
Moreover, SfM relies on the computation of the fundamental matrix (F) and 
RANSAC (Hartley and Zisserman 2004) which is comparable to the stereo 
relative orientation with coplanarity in photogrammetry (McGlone et al. 
2004). 
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Introduction 

The imaging can be either static (still imaging) or moving (video sequence). 
With video short baseline imaging the correspondences between images can 
be found by the so-called feature tracking like by using KLT method (Tomasi 
and Kanade 1992). The advantages of video imaging beside the flexibility of 
the recording is that the search for frame-to-frame correspondences are 
based on the assumption that between two consecutive frames corresponding 
features are hardly moving. Together with some more requirements like the 
mentioned F-matrix estimation, adding more frames to the solution using 
resection, some advanced self-calibration technique and finally a bundle 
adjustment, we are able to reconstruct a scene from a video sequence up to 
an unknown scale (Nister 2001; Pollefeys et al. 2004). A spatial similarity 
transformation is normally used to reconstruct the models in the object 
coordinate system. 
 
The insufficiency of using video image sequence when creating a 3D model is  
to have short baselines between images. This short baseline can lead to a 
small Base/Depth (B/D) ratio. The small B/D ratio is geometrically 
undesirable because of the bad intersection angle which results in a large 
depth error as shown in Fig.1.1. 
 

 
 

(a) (b) 
Fig.1.1: Imaging geometry. (a) Small B/D ratio and large error. (b) Large B/D ratio 

and small error. 
 
In addition the resolution of the current consumer video cameras is not 
sufficient when compared to the high resolution (HR) still frame images. 
Moreover, a significant number of the video frames are relatively blurry due 
to the motion of the camera. Therefore, the created 3D models from video 
frames are of low geometric and radiometric quality and the better choice is 
to use a camera with HR still imaging. 
 
For illustration, two 3D models of the same building are produced from video 
imaging and still imaging in Fig.1.2. The model produced from video imaging 
looks deteriorated and the facades are not perfectly planar compared to the 
model produce from still images.  

Base 
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Fig.1.2: Automated 3D model from (37) still images (left) and 3D model from (178) 

video frames (right). 
 
However, capturing thousands of high resolution still short baseline images to 
have a complete 3D model is not practical and expensive in the sense of 
computations. Also, there is no guarantee to achieve the required accuracy 
and full coverage. Therefore wide baseline images are to be captured. 
Consequently, corresponding features are probably not nearby in adjacent 
images, and the image overlap and connectivity is unknown as well. In 
computer vision approach and in contrary to the aforementioned approach of 
photogrammetry, there is a lack of the pre-knowledge about the scene and 
the EO. This would result in too many false matches if area based matching is 
used because of all the ambiguities and the computational complexity since 
the search space cannot be reduced. Much better image geometry can be 
exploited if it would be possible to find the matches in those wide baseline 
images independent of any pre information. 
 
The scale invariant operators like SIFT or SURF (Lowe 2004; Bay et al. 2008) 
provide the state-of-the-art methodology for a solution to the wide baseline 
image correspondence problem. The key solution with these operators is in 
the efficient histogram based description of (128 or 64 vector elements) of 
the detected keypoints in the sense of invariance to scale, rotation and 
illumination. 
 
The image correspondence is computed from a brute-force matching (all 
images against all), and the so-called matching connectivity tree is 
computed. However, these techniques are not only expensive in terms of 
computation time, but also vulnerable to problems of mismatches. 
 
The failure of SfM can be 3nalysed as a result of several causes like the effect 
of repetitive patterns or symmetries in the buildings architecture (Kosecka 
and Zhang 2010; Cohen et al. 2012; Wilson and Snavely 2013). These 
repetitive patterns can mislead the connectivity between images in the full 
pairwise image matching as shown in Fig.1.3.  
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Fig.1.3: Repetitive texture patterns affecting the tie points matching and leading to 

wrong correspondences. 
 
Furthermore, the SfM failure can result because of a weak or bad planning for 
the camera network around the object. This improper planning usually results 
in wide baseline imaging configuration (large B/D ratio). Although, wide 
baseline imaging gives higher positional accuracy as mentioned previously, 
the matching of markerless tie points during the SfM computations cannot 
handle images with wide baselines. 
 
The matching of wide baseline images is still a challenging problem due to 
the existence of occlusions, affinity, scale change and difference in 
persepective between the images. Therefore, fully automated orientation of 
this kind of wide baseline imaging is still a difficult task and manual 
interference might be necessary (Bartelsen et al. 2012).  
 
This mismatching will probably affect the SfM results. Fig. 1.4a and 1.4c 
shows the misclosure in the camera network and the effect on the resulting 
point cloud. Fig. 1.4b shows the repeated and shifted sparse point cloud 
inside the circles which is resulted because of the mismatching caused by the 
repetive patterns.  
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(a)  (own experiment)  (b)  (Wilson and Snavely 2013) 

 

 
© (Remondino et al. 2012) 

 
Fig. 1.4: Failure examples of SfM. 

 
To get a more accurate and reliable orientation and then a sufficient 3D 
model, it is important to place the camera in the proper location and attitude 
that satisfies all the geometric demands for the coverage and the accuracy of 
points. This is a preliminary step, but still highly affects the results due to the 
deep knowledge and cost needed for a good design (Remondino and El-
Hakim 2006). The camera planning will also assist to avoid the problem of 
repetitive pattern in image correspondence and provide a good 
approximation of camera orientation for running the bundle adjustment. 
 
After the successful step of image orientation with SfM, the technique of 
dense matching is often applied. The dense matching algorithm attempts to 
establish a maximum number of pixel-to-pixel correspondences in two 
images (Hirschmuller 2008; Furukawa and Ponce 2009). The forward 
intersection of all these points will lead to a dense point cloud in the object 
space. 
 
Dense matching or 3D reconstruction needs a sufficient percentage of overlap 
and similarity between the images and good B\D ratio for high depth 
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accuracy (Remondino et al. 2013) as shown earlier in Fig.1.1. Hence, the 
imaging configuration is to be designed carefully to find a compromise 
between the geometry, recovery and correlation (Hullo et al. 2009; CIPA 
2011; Haala 2011). Fig. 1.5 illustrates that even with a successful orientation 
of wide baseline images, the completeness of the 3D point cloud is not 
achievable. Therefore a compromise between the short baseline and wide 
baseline imaging is needed. 
 

   
Fig.1.5: Façade point cloud from the short baseline (left) and façade point cloud from 

the wide baseline (right) using Agisoft. 
 
The image based modelling workflow also contains the modelling of these 
dense point clouds into a surface mesh (Bernardini et al. 1999; Kazhdan et 
al. 2006). This is followed with Texturing for the reality and aesthetic 
visualization, which is important in many applications like cultural heritage 
documentation. 

1.2 Research problem 
Image-based modelling as stated previously is an important tool nowadays 
for realistic 3D modelling and other applications in close range 
photogrammetry and computer vision. Currently, different State – of – the – 
art software are available for performing the image orientation task 
automatically by using the SfM techniques. Nowadays, this automatic 
orientation task can be done with commercial software like Photomodeler 
scanner (PhotoModeler 2009), Pix4D (Pix4D 2013) and Agisoft (Photoscan 
2011) or open-source like Bundler (Snavely 2010), APERO (Pierrot-
Deseilligny 2012) , VSfM (Wu 2012), and 3DF Samantha (3DFLOW 2012). 
 
The orientation will allow creating the sufficient dense 3D point cloud and/or 
model of the study object by dense matching (Hirschmüller 2008; Furukawa 
and Ponce 2009). For open source software a dense matching software is 
needed to process the output of the orientation data to create the 3D dense 
clouds like PMVS (Furukawa and Ponce 2010), SURE (Wenzel 2013) and 
MICMAC (Pierrot-Deseilligny 2012). Promising examples are introduced to the 
community based on internet data sets which consumes a huge power of 
computing and automation like the work of ‘Building Rome in a Day’ (Agarwal 
et al. 2011). The 3D point cloud from a visualization viewpoint looks 
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interesting although it might not be sufficient for other applications like 
tangible cultural heritage documentation, large-scale mapping and close 
range photogrammetry. This insufficiency is due to the lack of completeness 
of the final 3D model and the probably low predicted positional accuracy 
compared to the standards of the detailed documentation (Letellier 2007). 
 
The reason is that this huge data set of collected images might be taken 
randomly without any pre planning. Therefore, reaching the required level of 
completeness and quantification will be a matter of coincidence.  
 
The key idea of these automated approaches is to have a successful image 
orientation by SfM and then an efficient dense image matching. However, 
there is no guarantee concerning the correct results of orientation and 
modelling completeness and often the reliability is very low (Remondino et al. 
2012) especially in the case of large data sets, wide baseline configurations 
(Fig. 1.5), illumination changes, or when repetitive pattern and homogenous 
texture areas exist (Fig. 1.4). 
 
Accordingly, the demand of detecting image points and matching them with 
other correspondences in other images represents a challenging task or the 
bottleneck in the whole procedure of orientation (Yang and Yuille 1995; 
Remondino et al. 2012).  
Despite the developed SIFT GPU implementations (Wu 2012), matching is 
still a time consuming operation when a large dataset of captured images 𝑛𝑛 
are: 
- of high resolution, which is the case nowadays even with consumer 

compact cameras or smart phones. 
- arranged in sparse block where the computation cost according to 

Barazzetti et al. (2010) is 𝑂𝑂(𝑛𝑛2) with a combination of images (𝑛𝑛
2−𝑛𝑛
2

). 

 
From the previous discussion, several shortcomings and problems in the 
current workflow of the image based modelling are still open and need to be 
solved. These shortcomings are mainly related to the possible unsuccessful 
image orientation.  
 
From the previous discussion, the problems to create a reliable 3D image 
based model can be: 
- The short baseline high resolution images can give a better coverage of 

the model, but to capture and process them is expensive. Moreover, they 
are unreliable in terms of accuracy as previously mentioned in context 
with the video imaging.  

- The wide baseline HR images are better in terms of positional accuracy 
and processing time. However, there is a difficulty to have a successful 
image matching and full coverage of the model.    
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- The difficulty even for professionals to capture the proper images of an 
object for 3D modelling. This is because of several reasons like the 
overlap between the images, the camera viewing angle, the distance to 
the object and the camera locations.   

- The unsuccessful tie point matching which results in a wrong image 
orientation. Repetitive patterns as mentioned before can lead to wrong 
matches, especially in wide baseline imaging configurations.  

- The difficulty to have a complete 3D point cloud of an object. This is 
because of the complexity of the object, the texture less parts, and the 
improper camera planning.       

 
The application area of this research is about the tangible cultural heritage 
documentation of buildings and sculptures.  Nowadays, different countries 
are investing in the 3D documentation or cataloguing of their cultural objects. 
However, the 3D modelling of cultural heritage is still not the conventional 
and a common procedure for such documentation. Reasons are high cost of 
3D, the difficulties in achieving good 3D models by everyone, and the 
consideration that it is an optional method of understanding (an additional 
“aesthetic” aspect) and documentation (Remondino and Rizzi 2010). 
 
For archaeologists, it is important to find a practical, efficient, low cost, and 
easy way to construct accurate and well-textured 3D models of tangible 
cultural heritage objects (finds, free forms, sculptures, carved walls and 
buildings). In virtual museums, the 3D knowledge is useful for academic and 
educational projects and culture resource managing (Gilboa et al. 2013). Two 
valuable examples are the virtual museum of Iraq (Mattei 2008) and the 
virtual Hampson Museum (Virtual Hampson 2010). The documentation with 
3D image based modelling is also valuable when archaeological or cultural 
heritage sites are preserved in a good way but hardly accessible by peaple  
(Stanco et al. 2011). 
 
Fig.1.6 illustrates the pipeline of imaging reconstruction techniques of the 
reality-based 3D modelling of cultural heritage. 
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Fig.1.6: 3D modelling of cultural heritage by imaging techniques. 

1.3 Research objectives 
For the purpose of having highly detailed 3D models and to avoid the 
shortcomings mentioned in the previous section, the main research 
objectives will be as follows  
 
1- Optimal camera network design: The first objective is to find the suitable 

camera placement where high resolution images will be captured. The 
imaging network should be designed with a balanced number of images 
and compromise between the short baseline and wide baseline imaging 
configuration. Moreover, geometrical constraints like reliability and 
visibility need to be satisfied.  

2- Guided imaging system: This objective is to enable the camera operator 
to find the suitable placements around or inside the study object and 
capture the images. The major task is the design of a user-friendly 
guiding tool. This will enable even non-professional persons to 
interactively understand and realize the capturing of the images at/on the 
site. 

3- Image orientation with guided tie points matching: This objective 
comprises the guidance of tie points matching between the captured 
images. This guidance should include the connectivity between the 
images and between the keypoints as well.  

4- Gap detection to check for the completeness of the 3D model: This 
objective aims to find the possible supplementary images that can 
complete the coverage of the missing parts of the object point cloud.   
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The following questions must be answered to achieve the research 
objectives: 

1. How we can design the camera network?  
In order to find the camera placements that guarantee the optimal coverage 
and accuracy, the following questions should be answered   

I. How to retrieve relevant geometric information of the target object? 
II. What are the necessary constraints that lead to the optimal network 

geometry and camera placement? 
III. What is a suitable optimization technique for the camera network 

design?  
 

2. How to build the guiding system? 
 

I. How to indicate the proper guided location?  
II. How can the system guide the camera operator to the correct 

location? 
 

3. How to guide and improve the tie points matching? 
 

I. What is the most suitable and efficient tie point matching and 
orientation technique? 

II. How to exploit the knowledge on image overlaps to avoid using the 
full pairwise matching? 

III. How to verify the accuracy of the actually captured imaging network 
against the accuracy of the designed one? 
 

4. How to ensure the completeness of the 3D model? 
 

I. How to detect gaps in the point cloud automatically? 
II. Where to capture the auxiliary images for the final modelling?   

All these questions will be answered through the proposed research. The 
general summary of the research objectives and questions is illustrated in 
Fig.1.7. 
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How to guide the image 
connectivity?

2nd objective:
Guide the image capture

How to indicate the proper 
guided location? 

How to guide the camera 
operator to the correct 

location?

1st objective:
Camera network design

How to retrieve the geometry 
of the target object?

How to compute the reliable 
minimal camera network? 

What are the constraints that 
lead to the optimal network? 

What is a suitable 
optimization technique?

3rd objective:
Guide the image matching

What is the suitable tie point 
matching technique?

How to verify the accuracy? 

4th objective:
Gap detection and P.C. 

completeness

How to detect gaps in the 
point cloud automatically?

How to capture the auxiliary 
images for the final modeling?  

 
Fig.1.7: The summary of research objectives and questions.  

1.4 Scope  and limitations 
This research aims to build an imaging system that guides the camera 
operator, even a non-professional, to capture the images in a simple user -
friendly way. The research scope is developed mainly for the documentation 
of tangible cultural heritage objects. More specifically, the workflow has been 
developed for image based modelling of buildings and statues, but is not 
limited to those applications. The research assumptions are based on 
conducting the imaging with a non-metric hand held camera. The camera can 
be pre calibrated or uncalibrated where a self-calibration is needed during the 
image orientation.  
 
Furthermore, the research methodology is based on applying terrestrial close 
range imaging that is restricted to the accessible heights by a layman.   

1.5 Innovations in this work 
This research investigates the ability to use automated image based 
techniques in creating a complete and reliable 3D model. Different methods 
will be developed to accomplish this modelling aim. A simulation of a dense 
imaging network followed by a reduction of imaging locations leads to the 
minimal camera network. Then mathematical optimization techniques are 
used to find the optimal imaging configuration that offers higher accuracy 
than the pre-designed network. Robust correspondence matching is also to 
be developed. Finally, we want to automatically detect the possible gaps in 
the 3D dense point clouds and to recover them.  
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The innovation of this work is: firstly, automating the camera network design 
that ensures both, coverage and accuracy requirements for the 3D modelling.  
Secondly, guiding the cameraman to the designed locations by a user-
friendly and easy to implement approach. 
 
Thirdly, a robust image correspondence matching is to be found relying on 
the camera network design and the object rough model. Finally, the possible 
gaps in the constructed 3D models are to be detected automatically and then 
to be recovered by capturing new auxiliary images. This is to be 
accomplished either by using image processing techniques or by voxelization 
approach. 

1.6 Thesis Outline 
The second chapter presents a literature review on the state–of–the–art in 
the Image based modelling and camera network design and optimization. The 
problem of visibility analysis of point cloud is also addressed. The third 
chapter summarizes the general methodology. The fourth chapter describes 
the camera network design, the minimal network and the optimization of the 
networks. 
 
Chapter five describes the guiding system design for capturing the images in 
the field as well as the computation of the image connectivity graph. The 
correspondence matching is also investigated for the final accurate image 
orientation. 
 
Chapter six presents the occlusion problem in 3D modelling and the 
procedures for detecting the resulted gaps in the point clouds. The final 
image capture and 3D modelling is also described. 
 
Chapter six will present experimental tests that show the impact of using the 
proposed methodology in the application of cultural heritage documentation. 
The last chapter describes the conclusions and recommendations for future 
research. 
 
Some parts of this thesis are quoted from papers published during the 
research (Alsadik et al. 2012; Alsadik et al. 2013a; Alsadik et al. 2013b; 
Alsadik et al. 2014a, Alsadik et al. 2014b). 
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Chapter 2 Literature Review  
The overall image-based 3D modelling (IBM) process consists of several 
successive steps (Remondino and El-Hakim 2006) as follows: 
• Design (sensor and network geometry). 
• 3D measurements (sparse and dense point clouds). 
• Structuring and modelling (segmentation, network/mesh generation). 
• Texturing and visualization.  
The previous research work that is dealing with the mentioned topics of IBM, 
will be discussed beside the state-of-the-art in this domain.  

2.1 Design (sensor and network geometry) 
The main purpose of network optimization is to design an optimal network 
configuration (how many stations are needed) and optimum-observation plan 
(how many images per station are needed) in the sense that they will satisfy 
the network quality requirement at a minimum cost (Kiamehr R. 2003). 
During the last three decades, the topic of network optimization was one of 
the interested and challenging problems in geodesy, photogrammetry, 
machine vision, and robotics.  
 
Olague (2000) defined the photogrammetric network design as the process of 
placing a camera in order to perform photogrammetric task. From  a geodetic 
viewpoint, Graferend and Sanso (1985) classified the design into four 
different problems: 
• Zero Order Design (ZOD) – the datum problem  
• First Order Design (FOD) – the configuration problem 
• Second Order Design (SOD) – the weight problem  
• Third Order Design (TOD) – the densification problem  
 
In the ZOD problem, the aim is to define an optimal datum to obtain accurate 
object point coordinates and exterior orientation parameters. Mathematically 
the design matrix has a datum rank defect and some form of free adjustment 
approach through generalized inverse is adopted (Fraser 1984).  The aim of 
the FOD stage is to define an optimal imaging geometry which means the 
determination of the camera orientations that lead to the desired 
reconstruction accuracy. The aim of the SOD is focused on adopting a 
suitable measurement precision for the image coordinates (weights) while 
TOD deals with the improvement of an existed network through the addition 
of new observations to the weak parts of the network (Fraser 1982; Fraser 
1989). 
 
Although the design problems were mainly for geodetic networks, 
photogrammetrists were also in need to optimize the imaging networks to get 
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better accurate positioning results. However, it was more difficult to handle 
these 3D networks. 
 
Fraser (1982) pioneered the network design application in close range 
photogrammetry by trying to study the effect of minimal constraints and free 
adjustment of the networks. Later on, Fraser (1984) investigated the design 
of non-topographic photogrammetric networks. The introduced study was 
based on a network simulation and results on specific design characteristics 
that is widely used nowadays. 
 
Mason (1995, 1997) presented a novel technique for designing the imaging 
networks in close range photogrammetry. He built a system called CONSENS 
(CONfiguration of SENsor Stations). The system was based on what is called 
generic network, which consists of four intersected images to provide a 
strong imaging geometry. Mason also defined the workspace of the camera in 
a tessellated sphere to limit the searching space. The experiments were 
always on a planar surface rather than complex shaped objects.  
 
From the CV community, a system called EPOCA (an acronym for “Evolving 
POsitions of CAmeras”) was introduced in (Olague and Moher 1998), (Olague 
2002),(Dunn et al. 2006) and (Olague and Dunn 2007). They divided the 
problem into two main components: analytical part dedicated to the analysis 
of error propagation from which a criterion is derived, and a global 
optimization (genetic algorithm) process to minimize this criterion. Their work 
concentrated on how to solve the problem of optimum camera placement 
mounted on robots in a limited workspace of a lab. 
 
An automatic sensor placement method in the field of vision metrology based 
on fuzzy logic method (artificial intelligence) was introduced by 
(Saadatseresht et al. 2004) ,(Saadatseresht et al. 2005), (Saadatseresht and 
Varshosaz 2007) and (Amini A. Sh. 2010). The concept was based on the 
challenge of designing the imaging network without pre knowledge about the 
object workspace. The method depends on taking many images from 
different views of the study object and was then followed by automatic 
enhancement of the accuracy of the existing network by adding new 
exposure stations. 
 
In active vision the camera placement is determined in automatic way (robot 
work cell) for the purpose of having valid viewpoints towards the moving 
objects like in surveillance planning (Abrams et al. 1996). Yang and Ciarallo 
(2001) tried to find the optimized camera placement for dimensioning a set 
of edge segments in a pre-designed CAD model of simple industrial objects 
by using genetic algorithm technique (Yang and Ciarallo 2001).  
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2.2 Three Dimensional Measurements And 
Reconstruction  

The use of images in the reconstruction of 3D models, requires different 
interrelated techniques as will be discussed in the following subsections. 

2.2.1 Structure from Motion (SfM) 
Structure from motion can be defined as the automated process of retrieving 
camera orientations beside the 3D positions of the tie points by analysing an 
image sequence.  
 
This is an important theme in computer vision, and great progress has been 
made both in theory and in practice during the last two decades (Hartley and 
Zisserman 2004; Quan 2010; Wang and Wu 2011). 
 
The SfM pipeline consists of a process to find correspondences along the 
stereo images using point features extracted by operators like SIFT (Lowe 
1999; Lowe 2004) or SURF (Bay et al. 2008). 
 
A following step is to estimate the fundamental matrix of each stereo pair 
with the use of outlier detection of RANSAC (RANdom SAmple Consensus) as 
mentioned in chapter 1. The interior orientation parameters of the camera 
are necessary to compensate the lens distortion and to have a metric 
reconstruction by computing the so called essential matrix (Hartley and 
Zisserman 2004). Then, the orientation (projection) matrix is computed for 
every image and a bundle adjustment for the whole block is to be carried out 
to ensure optimal results (Lourakis and Argyros 2004; Pollefeys et al. 2004). 
Bundle adjustment is a well-known mathematical technique in 
photogrammetry and computer vision. The concept is to minimize the errors 
between the computed and the observed image coordinates. Least square 
adjustment is to be used for the minimization either by using Levenberg – 
Marquardt or the Gauss-Newton method. 
 
Nister (2001) investigated the use of video imaging for a reality-based 3D 
modelling by using SfM technique, followed by a dense matching (section 
2.2.2). The models created by Nister were not so much realistic because of 
the limitations of Delaunay mesh and the known low resolution of the video 
camera as mentioned earlier in chapter 1.  
 
Remondino and El-Hakim (2006) reviewed the efficiency of using the camera 
self-calibration (with or without control points). They advised to use this 
technique only when the following is available: a strong geometric 
configuration with convergent images and a large number of spatially well 
distributed (3D) targets. 
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Recently, research work (Cohen et al. 2012; Wilson and Snavely 2013) is 
conducted to avoid the failure case of SfM because of the repetitive patterns 
or structures that is mentioned in chapter 1.  

2.2.2 Dense Matching 
The construction of a highly detailed and fairly realistic textured 3D model, is 
possibly based on creating a dense point cloud which necessitates to 
implement a dense matching between oriented images. 
 
Conventional techniques depend on correlating small image windows along 
the one dimensional epipolar line within the maximum disparity range 
(Lhuillier and Quan 2002). 
 
However, these methods assume constant disparities within a correlation 
window, which is incorrect at discontinuities and leads to blurred object 
boundaries (Hirschmuller 2005). 
 
Besides the strategy of limiting the search to the epipolar line, there are also 
the strategies of working with hierarchies of image pyramids, matching 
feature and edges first to provide better approximations for successive area-
based matching (ABM),using a region-growing from initial seed points, and 
computing intermediate depth maps (Remondino et al. 2008). 
 
Pollefeys (2008) used the plane sweeping algorithm for computing the depth 
maps. A fusion for the successive depth maps from image pairs is to be done 
to reach the final 3D model for 3D urban mapping from a moving vehicle. 
 
These mentioned techniques are not always effective especially in a wide 
baseline convergent imaging due to perspective distortions and possible 
occlusion problems (Remondino et al. 2013). 
 
The advanced techniques in dense matching are aiming to have an accurate 
dense stereo matching, especially at object boundaries, robust against 
illumination changes, detect occlusions, and determine disparities with sub-
pixel accuracy (Hirschmuller 2005). 
 
Two of these advanced techniques which are based on formulating the 
matching as an optimization problem are the dynamic programming (DP) 
technique and the Semi Global matching (SGM). 
 
In dynamic programming the effect of discontinuities is reduced by pixelwise 
matching but requires other constraints for piecewise smoothness. This 
means to constrain the disparities to be changed only by a certain amount 
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between adjacent pixels. The scan lines search limited to one dimension (1D) 
and independently for each pair of scan line which leads to streaking effects 
(Lysak and Kapshiy 2008). 
 
Hirschmüller (2005,2008) introduced his novel method of Semi-Global 
Matching (SGM) method. The SGM method uses a pixelwise Mutual 
Information (MI) cost metric and approximates a global 2D smoothness 
constraint by a combination of multiple 1D constraints. 
 
An additional constraint is added to the cost that supports smoothness by 
penalizing changes of neighbouring disparities, one penalty for the little 
changes (below 1 pixel) and the other for the larger disparity changes. Then 
the optimization is aggregated through the combination of several 1D 
optimizations. 
 
Another dense matching strategy depends on using the initially matching 
feature points as anchors for computing the full reconstruction. The 
disparities of the matched features points are propagated to their neighbours 
while uses them to initialize an iterative estimation of the depth maps (Tola 
et al. 2008). 
 
In a similar way (Furukawa and Ponce 2009) produced the state-of- the-art 
Patched Multi View Stereopsis (PMVS) algorithm. It consists of three 
successive steps which are matching, expanding, and filtering. In the first 
step corners are detected in each image and followed by matching the 
homologous points along the epipolar lines.  The computed 3D coordinates of 
these matched points represent the initial patches. The expansion step is to 
search the neighbouring image pixels and assign them as new patches after 
implementing a decision strategy to avoid overlaps and discontinuities. The 
normal and centre of each expanded patch can be estimated and optimized. 
The final step is to remove the wrong patches by applying three filters relying 
on the visibility consistency. Accordingly, PMVS provide with fine surface 
details despite low-texture regions, large concavities, and/or thin, high-
curvature parts. Optionally, the resulting patch model can be turned into a 
triangulated mesh. 

2.2.3 Modelling and Texturing  
Meshing and Texturing are the last steps in the workflow of the 3D 
reconstruction or IBM. Different techniques can be used to create a reality-
based 3D model starting from a dense point cloud which can be classified into 
three main techniques:   
- Volumetric representation (voxels). 
- Surface representation (polygonal mesh). 
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- Point patching techniques. 
 
Volumetric representation (use voxels as unit volume elements) was first 
introduced in the early 70’s in medical imaging and now it has been 
commonly used in scientific visualization, computer graphics and computer 
vision. The disadvantage of this technique is the need for a huge amount of 
memory and processing although it gives a better representation for the 
complex objects (Kuzu 2004). 
 
Remondino and El-Hakim (2006) stated that polygonal meshing is usually the 
most flexible way to accurately represent the results of 3D measurements, 
providing an optimal surface description. One of the most popular polygonal 
2D mesh algorithm is the Delaunay triangulation method while mesh surfaces 
in 3D space are called tetrahedralisation. Generally, these methods need a 
starting point like visual hull model, the computations of additional 
information like vertex normal, and an adequate number of points. 
 
Two effective and widely used 3D surface meshing techniques are the Poisson 
method (Kazhdan et al. 2006) and Ball pivoting method (Bernardini et al. 
1999).  
 
After constructing the 3D mesh it can be assigned a photorealistic 
appearance by the process of Texturing. Remondino and El-Hakim (2006) 
illustrates that for texture mapping, the colour images are mapped onto a 3D 
surface. Knowing the parameters of the interior and exterior orientation of 
the images, the corresponding image coordinates are calculated for each 
vertex of a triangle on the 3D surface. Then colour RGB values within the 
projected triangle are attached to the surface and the final product is a 3D 
textured model.  

2.3 State-of-the-art software in reality IBM 
It is useful to review the state-of-the-art software that is currently available 
for the users in the context of the reality IBM. The currently available 
software is either commercial, open source or a web application. 
 
Generally, open source software is available for solving a part of the whole 
IBM workflow like the task of image orientation with SfM. 
 
A SfM solution for a large data set of unordered images collected from the 
internet was introduced by (Snavely 2008) and the result was the State-of-
the-art open source software called  Bundler  (Snavely 2010). Bundler 
processes a set of images, image features, and image match as input, and 
produces a 3D reconstruction of the camera poses and a sparse scene 
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geometry (point cloud) as output relying on a modified version of the Sparse 
Bundle Adjustment SBA (Lourakis and Argyros 2004). Bundler is also used 
within the Microsoft web-based application of Photosynth (Photosynth 2012). 
 
Visual SfM software by Wu (2012) offered the implementation of SIFT GPU 
which extremely speeded up the tie points matching. Moreover, this open 
source software has many other abilities like the possibility to guide the 
connectivity between the images and image correspondences as well.  
 
Another open source software designed for the automation of IBM is called 
MICMAC (Pierrot-Deseilligny 2012). MICMAC is a complete package of tools 
that can be used to solve the image matching (TOPIACA) and orientation 
(APERO). Then, to create a dense point cloud. However, the current version 
still runs on CPU which consumes more processing time. 
 
For dense matching task, open source software like SURE (Wenzel 2013) 
which is based on using SGM and PMVS (Furukawa and Ponce 2010) are 
currently quite promising and widely used.   
 
The interesting web service 123D catch (Autodesk 2012) which is mainly 
released for 3D printing services, offered a complete package of image 
orientation and 3D modelling as well. However, the resulting accuracy is not 
suitable for close range photogrammetry applications (Chandler and Fryer 
2011). The first web service of 3D IBM was the ARC3D(ARC3D 2006) which is 
initiated by Vergauwen and Gool (2006). Currently, a web-based service 
similar to 123D catch is released by Autodesk company which is called ReCap 
360 (Autodesk 2013). ReCap 360 is designed to use the full resolution of the 
uploaded images, however, the free version is limited to process at maximum 
only fifty images. This IBM is released with another non-free standalone 
software version of laser scanning data called ReCap Pro.  
 
Among the known State-of-the-art commercial software are Photomodeler 
(EOSsystems 1994), Agisoft Photoscan (Photoscan 2011) , Pix4d (Pix4D 
2013) and Zephyr (3DFLOW 2013). 
 
Photomodeler is the pioneer commercial software for close range 
photogrammetry that has the ability to use the images for either manual, 
semi-automatic or fully automatic 3D modelling. A camera pre-calibration 
ability is also offered with coded target sheets. Another closer range 
photogrammetry software is the Australian software iWitness (Photometrix 
2003).  
 
Additionally, Pix4D software is currently the state-of–the-art for processing 
the Unmanned Airborne Vehicle (UAV) imagery. Agisoft Photoscan is also 
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widely used nowadays for automated camera orientation, orthophoto 
production and 3D modelling. Lately, another software called 
Smart3DCapture (Acute3D 2013) is released with two versions of scanner 
edition which handles up to 10 gigabytes of data and mapper edition which 
can handle unlimited number of images for large scale mapping projects . 
On the other hand, different software is available in the market that is 
capable of creating 3D models either as rendered graphical or as mapping 
textured models. As an example: Meshlab, 3D Reshaper, Maya, 3Dstudio 
MAX, LightWave, Polywork, and Rhino.  
 
Fig.2.1 summarize and classify the current state-of-the-art software for the IBM.   
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Fig.2.1:General techniques and state-of-the-art software for IBM.  

2.4 Shortcoming in the IBM State-of-the-art 
As mentioned in the previous section 2.3, a wide range of  commercial and 
open source software is available for users to create their 3D image based 
models. However, as indicated in chapter 1, there are several shortcomings 
and challenges in the current workflow that can be summarized as follows: 
- Image capture and planning: a significant difficulty is to capture the 

proper images for the task of 3D modelling. This means a difficulty to 
determine the necessary number of images to be captured and their 
orientations that guarantee the full coverage and the required accuracy 
of the project.  

- Tie point matching and image orientation: despite the use of a scale 
invariant feature operator like SIFT with the GPU implementation (Wu 
2012) for speeding computations, the full pairwise matching still 
comprises difficulties. The difficulties arise with the existence of repetitive 
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texture patterns like in building facades which likely mislead the SIFT 
descriptor matching. Moreover, the full pairwise matching is not suitable 
and expensive for on–the–fly 3D modelling  applications like in disaster 
mapping in the sense of time consumption and computations with a total 

combination �n
2−n
2
� for 𝑛𝑛 images. For image orientation, the iterative 

bundle adjustment needs good approximate values for the exterior 
orientation parameters. Otherwise, the solution might be unstable and 
diverge.    

- 3D model reliability: the reliability of the produced dense point cloud in 
terms of complete coverage and point accuracy is still questionable. This 
incompleteness is related beside other factors to the mentioned 
shortcomings in the image capture plan, the complexity of the study 
object, and the effect of occlusions.   

 
In this thesis, solutions will be presented for the aforementioned 
shortcomings as formulated in the research objectives in chapter 1. 

2.5 Visibility  
Computing the visible part of a 3D point cloud is a vital problem in computer 
graphics, computer vision, robotics, GIS and photogrammetry. Usually the 
visibility should be accomplished in an automated way from a certain 
viewpoint or camera. 
 
The visibility problem is to be handled with both sparse or dense point cloud   
as shown in Fig.2.2 where the objects looking direction cannot be identified 
(Katz et al. 2007). This necessitate to use the visibility testing and to discard 
the occluded points to properly view the object points.  
 

  
Fig.2.2: Point cloud in an unknown looking position either forward or backward. Sample 

data quoted from (Luigi 2009). 
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The earlier digital methods of terrain visibility analysis is presented in GIS an 
known as viewshed analysis (Yoeli 1985). The method is simply to analyze 
the Line Of Sight LOS between the observer and the target. This is by 
comparing the tangent of the LOS angle and the other angles of the terrain 
points. The visibility is considered blocked when the tangent of the angle 
between the observer and an middle terrain points is greater than the 
tangent of the observer-to-target angle (Fisher 1996). 
 
During the last two decades, different methods were developed to solve the 
visibility problem in the field of computer graphics for real-time rendering and 
compute games (Bittner and Wonka 2003; Cohen-Or et al. 2003). Currently, 
the method of hidden point removal HPR (Katz et al. 2007) is widely applied 
for the visibility analysis. The advantage of this technique is to avoid creating 
a surface from the point cloud which might be expensive and this led to  
analyze visibility efficiently with both sparse and dense clouds. However, 
when the point cloud is noisy or non-uniformly sampled, a robust HPR 
operator (RHPR) is preferred to be used (Mehra et al. 2010) to deal with 
these cases.  
 
Other techniques are based on creating a triangulated mesh surface like by 
using Poisson reconstruction (Kazhdan et al. 2006) or ball pivoting 
(Bernardini et al. 1999). After we create the surface, the notion of visibility 
can be uniquely defined and then find its hidden and visible points from any 
viewpoint. This is mathematically achieved by either intersecting the line of 
sight rays with the surface triangles or checking the orientation of the surface 
normal.  
 
With volumetric data applications, a voxel based techniques are suitable 
more than triangle based. However, we cannot simply adopt those voxel 
techniques (Kuzu 2004). The surface normal vector is more expensive to 
compute and less accurate as well. Therefore line tracing and z-buffering is 
usually used with these volumetric data types. 
 
In line tracing, the concept is to define the ray between the voxel in question 
and the viewpoint. Then tracing this ray towards the destination and stop 
when another voxel is intersected.  
 
The z buffering or depth buffering is perhaps the simplest, and is the most 
commonly used according to Joy (1999). 
These visibility methods can be summarized as: 
• The surface triangle based methods (the normal direction testing, triangle 

– ray intersection, Z –buffering method). 
• The voxel based techniques (voxel - ray  intersection, ray tracing and Z- 

buffering method). 
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• The hidden point removal (HPR).  

2.5.1 Surface triangulation based methods 
The triangulation based methods can be applied by either testing the surface 
normal direction, intersection between a triangle and a line in space or by 
using the distance buffering by projecting the points back into a plane 
(image). These three methods require the creation of a triangulated surface 
which can be expensive in terms of computations and time consuming. 
 
A. Testing the surface normal direction: This method is considered a 

simple method when compared to the other two methods since it is just 
based on testing the angle difference between the vertex (or face) surface 
normal and the viewing direction. The methodology is based on creating a 
triangulation surface and computes the normal vector for each vertex or 
face. Several efficient methods are found for the surface triangulation like 
ball pivoting (Bernardini et al. 1999) and Poisson reconstruction (Kazhdan 
et al. 2006).These normal vectors are used to test the visibility of points 
in each camera as shown in Fig.2.3 which shows a simulated building 
facade example.  

 

 
Fig.2.3: Visibility by using the triangular surface normal vectors. 

 
Accordingly, the decision of considering points as visible or invisible is 
depending on the absolute difference between the orientation of the 
camera optical axis 𝐶𝐶𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑  and the face normal direction 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑. This 
difference is compared to a threshold (like <90o) to decide the visibility 
status.  
However, it must be noted that by only using this technique, we are not 
able to detect and avoid occluded points. This is obvious when the angle 
difference is less than the threshold while the protrusion of a façade 
occluding the point. 

 
B. Ray - triangle intersection: This method and the method of ray –voxel 

intersection is based on the same geometrical strategy where each 
triangle vertex is tested whether representing the first intersection point 

No visibility 
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with the line emerging from a certain viewpoint or not. Being not the first 
intersection point indicates the occlusion case. Every vertex point in every 
camera or viewpoint should be tested to reach the final visibility labeling. 
This illustrates the large amount of computations needed in these 
geometrical intersection methods. However, it seems accurate and no 
incorrect visibility cases can arise. (Fig.2.4)   

 
Fig.2.4: Visibility by testing the ray-triangle intersection. 

 
Mathematically, the intersection method is based on calculating the 
intersection of a line and triangle in space (Möller and Trumbore 1997). 
However, the disadvantage of this visibility method is the difficulty of the 
reconstruction (surface triangulation) since it often requires additional 
information, such as normals and sufficiently dense input. Moreover, it is 
computationally expensive with a large data set because every triangle 
should be tested for the intersection.  

 
C. Z-buffering method: The third triangle – based technique is the Z- 

buffering or depth buffering method which is applied by projecting the 
surface triangles back to a grid plane like a digital image. These back 
projected 2D triangles are tested whether represent the closest or the 
farthest from that plane. The occluded triangles will be neglected and only 
keep the close triangles which should be visible from the defined 
viewpoint as shown in Fig. 2.5. The final visibility map is like a digital 
image, but the pixel values are the (𝑥𝑥,𝑦𝑦, 𝑧𝑧)  coordinates instead of the RGB 
information. The pixel size should be selected carefully to avoid extra 
processing time or less efficient results.  

 

No visibility  
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Fig.2.5: Depth - buffering method. 

2.5.2 Voxel based approach 
In some applications like gaming or other computer graphics applications, the 
point cloud is represented as voxels and it seems very useful to analyze the 
visibility on the basis of voxels rather than points. The advantages of using 
these methods are the avoidance of creating a surface while it is considered 
an expensive approach in terms of computer memory. Three different 
techniques are listed in the following sections which are: voxel –ray 
intersection, voxel distance buffering and ray tracing methods. 

 
A. Voxel – ray intersection: In this technique, the visibility test is applied 

by intersecting a ray emerging from the viewpoint (origin-o) with a certain 
direction 𝑑𝑑(𝑑𝑑𝑥𝑥,𝑑𝑑𝑦𝑦,𝑑𝑑𝑧𝑧) to the voxels (𝑣𝑣𝑚𝑚𝑑𝑑𝑛𝑛, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚) and to check if it intersects 
(flag=1) or not (flag=0). This is a typical line-box intersection problem 
presented by Williams et al. (2005) and coded by Mena-Chalco (2010). 
Turning the point cloud into voxels is simply driven by gridding the space 
occupied by the points according to a specific voxel size. This is followed 
by discarding the empty voxels and keeping all the occupied voxels as 
shown in Fig.2.6. 

 
Fig.2.6:Voxel-ray intersection for visibility.  

 
To speed up the computations of the intersection algorithm, a bounding 
volume hierarchy BV is created (Smits 1998).  
Mathematically, the intersection involves computing the distance from the 
origin to the intersection point which object was hit Mena-Chalco (2010). 

 

𝐿𝐿1 
𝐿𝐿2 

𝐿𝐿2 < 𝐿𝐿1 

 

Origin 

𝑣𝑣𝑎𝑎𝑠𝑠𝑛𝑛 

𝑣𝑣𝑎𝑎𝑎𝑎𝑥𝑥 

25 



Literature review 

The advantages of this method beside the avoidance of surface 
reconstruction are that no settings are required to implement the method 
except the voxel size to get better accurate results. However, 
disadvantages of this method arise when processing a large data set 
because it can be expensive in terms of time and memory consumption.  

 
B. Buffering technique: The distance buffering method is applied in a same 

way as in the triangle buffering method. Projecting the voxels back to a 
grid plane and testing whether the 2D polygons represent the closest or 
the farthest from that plane. The occluded polygons will be neglected 
while the non-occluded polygons which should be visible from the defined 
viewpoint will be kept. The time consumption is a main disadvantage of 
this method. 

 
C. Ray tracing technique: The ray tracing method or voxel traversing is 

simply implemented by computing tracing points (or voxels) along the ray 
toward the destination voxel. These tracing points will be computed every 
small interval which is less than the voxel size. Then tested whether they 
intersect or hit a voxel before reaching the destination. The voxels will be 
labeled as visible or hidden based on this methodology. 
 
It is worth to mention that the difference between the ray tracing method 
and the methods of buffering and ray–voxel intersection is 
mathematically: 
- The ray tracing method is a forward computation starting from the 
viewpoint position and proceed in specific intervals. 
- The ray-voxel intersection is an inverse computation between the voxels 
in question and the viewpoint. 

2.5.3 Hidden point removal (HPR) 
The concept of this method is applied by assuming the viewpoint C is placed 
at a sphere origin. The point cloud is projected through the sphere to the 
opposite outer side in what is named spherical flipping (Fig.2.7). Spherical 
flipping reflects a point with respect to the sphere by applying an equation 
defined by (Katz et al. 2007). The flipped point cloud and the viewpoint will 
be represented by a convex hull (yellow shaded in Fig. 2.7). Then, the 
transformed points that are located on the convex hull are extracted as 
visible points.  
 
The major advantages of this method are to determine the visibility without 
reconstructing a surface compared to the previous surfacing methods beside 
the simplicity and short implementation time. Moreover, it calculates visibility 
for dense as well as sparse point clouds, for which reconstruction or other 
methods, might be failing. However, the disadvantage is realized when a 
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noisy point cloud exists (Mehra et al. 2010). Moreover, it is necessary to set 
a suitable radius parameter that defines the reflecting sphere (Alsadik et al. 
2014b).  
 

 
Fig.2.7:  HPR method (Katz et al. 2007).  
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Chapter 3 Overview of Methodology 
To give the reader a complete picture about the research implementation in 
the following chapters, the general methodology of this thesis will be 
described.     
 
As stated previously in chapter 1 in section 1.2, four research objectives are 
to be investigated as follows: 
1- Camera network design. 
2- Guiding the camera operator. 
3- Guiding the tie points matching in the SfM. 
4- Detecting and recovering for the occluded gaps in the 3D point cloud. 
 
These research objectives are to be tested in the application of cultural 
heritage documentation specifically with statues and buildings. The following 
sections introduce the general methodology (Fig. 3.1) of this thesis and the 
details will be investigated in the following chapters. 
 

 
Fig.3.1: The general methodology of the proposed camera network planning and 

guidance.  
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3.1 Camera network design 
The first objective of this research as will be described in chapter 4 is to build 
a camera network design system that guarantees sufficient coverage of the 
object and reliable image-based 3D model reconstruction. Furthermore, the 
design is expected to reduce the cost and enable non-professionals to create 
these 3D models. 
 
The initial step to implement the design is to create a rough 3D model of the 
object to recognize its rough shape and size. This is a necessary input for the 
subsequent design of a camera network in the sense of coverage and 
accuracy. 
 
This initial step of rough modelling can be acquired by video imaging of the 
object where no experience or conditions are necessary during the shooting. 
Firstly, a dense camera network will be designed according to the geometrical 
specifications of Ground Sample Distance (GSD), camera interior geometry, 
B/D ratio and the estimated positional accuracy 𝜎𝜎𝑚𝑚,𝑦𝑦,𝑧𝑧.    
 
Secondly, the dense network will be reduced to the minimal network that still 
guarantees a full coverage of the whole object. Different strategies of filtering 
will be proposed and tested. An optional step is to apply optimization 
techniques to the minimal networks to improve the positional accuracy of the 
object points with respect to constraints. The general methodology of this 
objective is shown in Fig.3.2.  

camera network design

Create rough point cloud 
GSD

σxyz

B/D
Camera 

parameters 

Design dense camera 
network Minimal camera networkfiltering

Optimal camera network

optimization

 
Fig.3.2: The methodology of camera network design.  

3.2 Guiding the image capture 
General rules were introduced to simplify the capture of the images for the 
3D modelling of buildings, statues or complex sites (Hullo et al. 2009; CIPA 
2011; Remondino et al. 2013). However, these guiding rules are still difficult 
to be implemented by non-professionals and sometimes even to 
professionals. This difficulty is because of the dependency on the object 
geometries, size, accessible space and to maintain the camera orientations in 
a specific pose.  
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Therefore, and in connection with the objective of the camera network 
design, a guiding procedure is introduced in this thesis in chapter 5.  
 
Accordingly, the designed optimal network is to be captured on the site 
where the camera operator has to recognize where to locate and how to 
rotate the camera. The proposed methodology is to synthesize the images 
that should actually be taken by retrieving the rough 3D model that is 
produced from video imaging. Then, a SIFT matching between the synthetic 
and real captured image is to be made. This is necessary to compute the 
equivalence between the planned and actually taken images. Error estimation 
of the object points will assist in making the decision if the captured images 
are sufficient or to recapture the image. Fig.3.3 shows the general workflow 
to implement this objective. 

3.3 Guiding the image tie points matching 
To have a successful tie point matching as described earlier in chapter 1 and 
chapter 2, different conditions are to be met. These conditions might be:  the 
good B/D ratio, good illumination, strong internal camera geometry and the 
low complexity of the object. Although most of these conditions can be 
fulfilled, the complexity of the object like the effect of repetitive patterns is 
still difficult to avoid. 
 
Therefore, and in connection with the previously described objectives, a 
guiding methodology of the tie point matching will be introduced in this thesis 
in chapter 5. The method is simply relying on the pre-computed image 
connectivity during the design stage. Therefore, the matching of 
correspondences between the image pairs will be guided rather than applying 
a full pairwise matching where the probability of mismatching is much higher. 
Moreover, the information about the exterior orientation of the images and 
the object rough model will be utilised to limit the application of SIFT 
matching to small windows. This is expected to give more reliable tie point 
matching and to avoid the effect of repetitive structures (Fig.3.3).   
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Fig.3.3: General methodology of the proposed guiding system.  

3.4 Detection and recovery of gaps in the 3D point 
cloud    

Dense point clouds either produced from range-based or image-based 
techniques are subject to the incompleteness or gaps. Gaps may have 
different causes like the effect occlusions, texture-less objects, or insufficient 
data collection or the bad design. For image-based point cloud, the dense 
matching technique of the oriented images as discussed in chapter 2 will 
result in a dense point cloud of the object. However, gaps can be found in the 
point cloud and should be detected and recovered to reach a complete 3D 
model. 
 
In this thesis in chapter 6, a gap detection approach will be presented. The 
proposed methodology of detection is built on either a 2D space or 3D space 
representation. The 3D approach is based on a voxel representation of the 
whole space spanned by the point cloud. The empty voxels are to be filtered 
from blunders and then to check their visibility from the captured images. 
The partly occluded voxels will be considered as potential gaps in the point 
cloud. The final decision of detecting gaps will be assisted by checking the 
status of the surrounding or neighbouring voxels for every partly occluded 
voxel.  
 
Based on the detected gaps, additional images are to be captured to improve 
the lack of coverage and to have a complete 3D model. Fig.3.4 illustrates the 
proposed methodology of this gap recovery objective.  
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Fig.3.4: The gap detection methodology. 
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Chapter 4 Camera Network Design 
According to the demands of portability, low cost, fast acquisition, and 
accuracy, images represent a suitable source to create the reality 3D models 
as explained in the previous chapters. 
 
Although automatic techniques for measuring image coordinates and 
reconstructing camera orientations are achievable nowadays, automated 
creation of accurate and highly detailed 3D models still needs a well-designed 
camera network. Camera network design requires many efforts in planning 
and a high degree of proficiency (Remondino and El-Hakim 2006; Barazzetti et 
al. 2010), which is a costly operation, and it is mainly concerned with finding 
the suitable placements for the minimum number of imaging cameras. 
 
The term ‘optimal imaging configuration’ within the camera network design is 
referring to have a camera network yielding a high accuracy of the 
reconstructed 3D scene points and complete coverage. This optimal network is 
constrained by having good imaging conditions and appropriate hardware. As 
presented in chapter 2, the optimization of networks has been developed and 
studied extensively by the geodesists. They, classified the problem into four 
classes (zero, first, second and third order deign) basing on the requirement 
and use of the geodetic network. This classification of network optimization is 
identical with camera network design in photogrammetry. The optimal camera 
network means to find the appropriate placement of cameras and the best 
observation plan (number of images). This is quite demanded and applicable 
for industrial applications and deformation monitoring in close range 
photogrammetry (Fryer et al. 2007). Since these photogrammetric 
applications ask for a high positional accuracy, a wide baseline camera 
network is usually designed. Then, image measurements are applied either by 
manual interaction or using coded targets as control points. However, for 3D 
reconstruction with markerless image points and in contrast to the mentioned 
applications a short baseline network is needed as illustrated in chapter 1. 
 
The objective in this chapter is to research about finding the optimal camera 
network for a highly detailed 3D modelling. As will be described in chapter 5, 
this should enable a non-professional to take the planned imagery suitable for 
the 3D modelling task. The developed method will be applied to the 
documentation of cultural heritage objects like buildings and statues. The 
method is based on finding a rough point cloud as obtained from the state-of-
the-art SfM techniques. The optimal network will be acquired by finding at 
first, the sufficient number of imaging cameras for each object point and then 
optimizing the network accuracy. Fig. 4.1 illustrates the general methodology 
workflow for having the optimal camera network design of buildings. 
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Fig. 4.1: The general methodology of camera network design. 

4.1 Initial point cloud  
Enough information about the study object like shape, size, and geometry 
necessitates the generation of primary or rough point cloud to proceed with 
the camera network design. This sparse point cloud is derived by applying 
the SfM technique using a video image stream of the object. 
 
At this stage, the video imaging is to be used rather than the still shots for 
the reason of simplicity and the ability of non-professionals to do this 
mission. This means that the camera operator does not need to take care 
about the overlap percentage between the images and the places of taking 
the image shots.  
 
Consequently, the SfM technique consists of matching features along the 
stereo images, which can be done, by feature tracking technique as 
mentioned earlier in chapter 1. One of the most popular standard algorithms 
for selecting and tracking feature points through an image sequence is KLT 
which is proposed by Tomasi and Kanade (1992) and further developed by 
Shi and Tomasi (1994).  
 
In Fig. 4.2, different examples are shown were the a camera tracking 
software like Boujou (Vicon 2010) is used. The video streams around a statue 
and a facade are processed by SfM and finally get these sparse point clouds.  
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Fig. 4.2: Initial point clouds and video track. 

4.2 The subdivision of the point cloud and camera 
domain  

It is necessary when designing the imaging network of buildings to define the 
camera domain that is sufficient for having a complete 3D model. The 
implementation of this task starts by automatically decompose the point 
cloud of the building into facade planes (Fig. 4.3a). Therefore, the detection 
of individual facades will simplify the design by building a camera network for 
every detected façade. Then, all the individual networks will be connected by 
adding connecting cameras as described in section 4.3. This procedure will 
guarantee both, the full coverage of the object and the connection of 
adjacent facade camera networks to have ultimately a complete 3D model of 
the building. This subdivision methodology is more efficient for buildings than 
planning a ring camera network when U-shape facades exist. The 
surrounding ring network might not be convenient to cover the object at that 
U-shape part as shown in Fig. 4.3b.  
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(a) 

         
(b) 

Fig. 4.3: (a) Subdivide the building point cloud into its facades. (b) Two types of 
camera networks for a U-shaped building with the subdivision into facades and the 

inefficient ring network design. 
 
Accordingly, the following generic strategy for automatic camera domain 
identification will be followed (Fig. 4.4):  
• Identifying the imaging location (outside or inside). 
• Simplifying the object into adjacent segments: this task is based on the 

assumption of a 2D problem where the point cloud is projected into the 2D 
plane. Morphological closing is applied, and the building outline is traced 
and segmented into straight-line parts which correspond to facades. It 
must be mentioned that the assumption of a 2D problem is based on the 
fact of having a rough point cloud acquired for a street level video 
imaging. This video imaging will certainly produce points only on the 
facades rather than points on the roofs. However, the image dilation is 
expected to erase points on roofs as their density is relatively low. 

• Subdividing the point cloud, according to the detected segments: this task 
is formulated in 3D where the points that fall inside the domain of a 
detected segment are considered as a single building facade.   

Weak 
coverage  
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Consequently, the initial camera network can be designed and placed for 
each detected segment (facade), in the right place that guarantees the full 
coverage of the object. 
 

Rough model
of a building

Identify the imaging 
status form inside 

or outside

Start 

Subdivide into 
facades 

Identify the camera 
domain and 
placement

end
Simulate a dense 
ordered block of 

images

Fig. 4.4: Workflow of finding the camera domain of a rough cloud of a building.  

4.2.1 The identification of imaging location 
To build an automated dense camera network system of section 4.3 with a 
correct camera orientation, there is a need to identify if the cameras will be 
placed from outside or inside the object. In both cases, the developed 
algorithm starts by computing the best-fit circle for both of the initial video 
camera locations and the derived rough point cloud. The symbols ‘r’ and ‘R’ 
denote the radiuses of these two best fit circles respectively as shown in Fig. 
4.5. 
The algorithm output is to indicate either the designed cameras will be placed 
inside or outside as follows:  
a) If R> r then the imaging is from inside. 
b) If R<r then the imaging is from outside. 
 

 
Fig. 4.5: Identification of cameras to be placed inside or outside the building. 

(a) Inward camera domain (R>r). (b) Outward camera domain (R<r). 
 

It must be noted that this is applicable for buildings; while statues are always 
imaged from outside and the camera domain can be represented simply as a 
circular network domain as will be shown in Fig. 4.7. 
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4.2.2 The camera domain placement 
After the identification of the imaging and if the point cloud are properly 
segmented (section 4.2.3), the camera domains will be identified. This 
placement is based on computing the azimuth angles of the 2D segments in a 
clockwise direction (arrow head in Fig. 4.6). Therefore, if the detected object 
according to the object identification is to be imaged from outside, the 
camera domain is constructed to the left side by subtracting 90o from the 
azimuth direction while adding 90o if the imaging is from inside as illustrated 
in Fig. 4.6.  

 
   (a)     (b) 
Fig. 4.6: The angular orientation of suitable camera domains for. (a) Outward camera 

domain object. (b) Inward camera domain. 
 
However, for free form objects like statues and monuments, the camera 
domain can be adopted in most of the cases as a circular network around the 
statue as shown in Fig. 4.7.  
 

 
Fig. 4.7: The camera circular domain for statues and monuments. 
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4.2.3 The subdivision into facades 
The identification of whether to place the cameras outside or inside is not 
enough for the completion of the network design. There is a need to specify 
their locations with respect to the building facades as stated previously to 
guarantee the sufficient coverage. Therefore, it is necessary to detect 
automatically, the object geometric primitives, like the planes of the building 
facades. The method is based on detecting facades and then to design a 
camera network for every façade (Fig.4.6). However, the adjacent camera 
networks should be connected by adding connecting cameras in a similar way 
introduced by Mason (1995) as described in section 4.4. 
 
The subdivision methodology is illustrated in Fig. 4.8 by transforming the 2D 
point cloud into raster format, namely a binary image (BW). The size of this 
created BW image is chosen to guarantee a reasonable pixel dimension of 
25cm to represent any real gap in the point cloud. 
 
Accordingly, mathematical morphology techniques, namely, dilation, erosion, 
and contour tracing are used to extract the linear segments and the corner 
points of the building outlines. This is followed by removing redundant corner 
points along every segment to get the correct segments corner points that 
eventually define the building outline. 
 
Finally, the point cloud will be divided into sub clouds relating to each 
detected segment. These facade rough point clouds will be used for designing 
the camera network of section 4.3. 
 

3D Point 
cloud(x,y,z)

2D Point 
cloud (x,y)

Transform to 
binary image

(0,1)

 Morphological 
closing

Contour 
tracing

Find corners 
and edges

Transform to 
vector (X,Y)

Final sub-
clouds

 
Fig. 4.8: Point cloud subdivision methodology.  

 
The image dilation will be applied in order to guarantee a continuous object 
boundary in case of any existing gap in the raster image. The dilation will be 
followed by erosion (morphological closing) using a square structural element 
SE. The contour-tracing algorithm is applied in order to produce an ordered 
list of the outline or a contour of the building boundaries. 
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Once the contour of a given shape is extracted, corner points or edges 
endings can be extracted. Therefore, the correct extraction of the contour will 
produce more accurate features, which will increase the chances of correctly 
classifying a given pattern (Ghuneim 2010). Ultimately, the normals of the 
traced pixels are computed to extract or refine the detected edges or corners. 
(Fig. 4.9).  

 
Fig. 4.9: Edges extraction by testing the normal.  

 
The final step is to divide the point cloud into sub-clouds relating to each 
detected segment or building facade. This is accomplished by searching for 
the points that are within the domain bounded by the minimum and 
maximum coordinate limits of each detected facade segment. Fig.4.10 
illustrates the whole subdivision procedure.  

1st 
 

2nd 
 

𝛿𝛿 < 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑑𝑑 
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Fig. 4.10: Point cloud subdivision technique. 

 
However, the adjacent facades of buildings are not always right angled and 
cause the bounded domains to interfere. This problem is to be avoided by 
testing the triangulated surface normal directions of the point cloud against 
the normal azimuth direction of the detected segment (Fig. 4.11).   

 
Fig 4.11: Surface normals are used to avoid interference of sub-clouds.   
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It should be mentioned that for curved facades, the proposed method results 
in multiple connected segments. The following section 4.3 is describing the 
procedure for designing and computing the dense initial camera network. 

4.3 Initial camera network design in blocks 
The imaging network design is usually formed in a block shape where 
overlapped images are designed in multiple overlapped strips. In close range 
photogrammetry, a block can be designed either in an ordered image 
sequence or unordered sets of images. The first design has a linear 
computational cost with respect to the number of images. For unordered sets 
of images, it is necessary to check all possible image pair combinations to 
determine the ones sharing sufficient correspondences (Barazzetti et al. 
2010) Therefore, each image must be compared with all the others, leading 
to a high computational cost. For this reason, we used the first type of an 
ordered imaging block as shown in Fig. 4.12. 
 
In the design step there are two possible choices, either to start from the 
maximum observation scheme and minimize until finding the optimal or to 
start from the minimum observations and maximize until reaching the 
optimal observation plan. In this thesis, the first choice is adopted by 
designing a dense camera network with an overlap percentage of (80-90%).   
This strategy of maximum to minimum is especially suitable for finding the 
minimal number of images among a huge number of captured images for an 
object like the internet collection images (Snavely 2008).    
   

 
Fig. 4.12: Photo layout for standard ordered-block in terrestrial photogrammetry. 

 
The algorithm that is used to design the imaging blocks is based on the 
conventional aerial block design as follows (Wolf and DeWitt 2000): 
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𝑊𝑊 = 𝑟𝑟𝑠𝑠𝑎𝑎𝑜𝑜𝑟𝑟 ∗ ((1 − 𝑟𝑟𝑠𝑠𝑑𝑑𝑟𝑟𝑜𝑜𝑎𝑎𝑠𝑠) ∗ 𝑓𝑓ℎ) (4.1) 
 
𝐵𝐵 =  𝑟𝑟𝑠𝑠𝑎𝑎𝑜𝑜𝑟𝑟 ∗ ((1 − 𝑟𝑟𝑛𝑛𝑑𝑑𝑜𝑜𝑎𝑎𝑠𝑠) ∗ 𝑓𝑓𝑓𝑓) (4.2) 
 
𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠    = �𝑍𝑍2−𝑍𝑍1

𝑊𝑊
� + 1 (4.3) 

 
𝑠𝑠ℎ𝑜𝑜𝑡𝑡𝑜𝑜𝑟𝑟 = �𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿ℎ

𝐵𝐵
� + 1 (4.4) 

Where  
𝑊𝑊 
𝐵𝐵 

𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠 
𝑠𝑠ℎ𝑜𝑜𝑡𝑡𝑜𝑜𝑟𝑟 
𝑓𝑓ℎ 
𝑓𝑓𝑓𝑓 

𝐿𝐿𝑟𝑟𝑛𝑛𝐿𝐿𝑡𝑡ℎ 
𝑆𝑆𝑠𝑠𝑎𝑎𝑜𝑜𝑟𝑟 
𝑍𝑍1,𝑍𝑍2 

: The lateral advance per strip  
: The imaging base 
: The number of strips per block  
: The number of photos per strip   
: The camera frame height 
: The camera frame width 
: The object length 
: Image scale number 
: The upper and lower height of the point cloud 

 
Since the heights that are accessible by the camera operator are chosen to 
be in the range of (0.5 – 2 meter), we will have a block design of two strips 
of images in most of the cases to completely capture the object of a cultural 
heritage building in stereo as will be shown in the tests.  
The viewing angle 𝜔𝜔 of the cameras toward the object will be computed for 
each strip according to the difference in height between the object and the 
camera as shown in Fig. 4.13. 

 
Fig. 4.13: The relation between the camera accessible heights and object height. 

 

+𝜔𝜔 

−𝜔𝜔 
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The distance between the camera and the study object (𝐷𝐷𝑟𝑟𝑠𝑠𝑡𝑡ℎ) is an 
important parameter in the camera placement objectives and this is 
influenced by many factors like camera field of view, user-defined resolution, 
positional accuracy, depth of field and number of imaged points 
(Saadatseresht et al. 2005).  
The required object minimum resolution or ground sample distance (GSD) is 
an important factor in determining the maximum depth distance between the 
camera and the object. The pixel size (𝑠𝑠𝑠𝑠𝑥𝑥𝑟𝑟𝑜𝑜) can be factored beside the 
object resolution to find the depth distance as follows: 
 
𝐷𝐷𝑟𝑟𝑠𝑠𝑡𝑡ℎ = 𝐺𝐺𝐺𝐺𝐺𝐺∗𝑓𝑓

𝑝𝑝𝑑𝑑𝑚𝑚𝐿𝐿𝑝𝑝  
  (4.5) 

 
On the other hand and according to the accuracy requirements, the depth 
can be determined within the scale (𝑓𝑓/𝐷𝐷𝑟𝑟𝑠𝑠𝑡𝑡ℎ) as follows (Fraser 1989; 
Luhmann T. et al. 2006). 
 
𝜎𝜎𝑋𝑋𝑋𝑋 = �𝑞𝑞 ∗ 𝑟𝑟𝑠𝑠𝑎𝑎𝑜𝑜𝑟𝑟 ∗ 𝜎𝜎𝑑𝑑𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿� √𝐾𝐾⁄  (4.6) 
 
Where 𝜎𝜎𝑋𝑋𝑋𝑋 is the standard error in the object point, 𝑞𝑞 is a design factor 
expressing the strength of the basic camera station configuration (0.4-1.1), 
𝜎𝜎𝑑𝑑𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿 is the standard error in the image coordinates and 𝐾𝐾 is the number of 
images per camera station.  
 
Nevertheless, in the camera network design, the minimum depth will be 
selected as the designing distance to maintain both demands of resolution 
and accuracy. 
 
After setting all the requirements of the imaging block design and computing 
the segmented point cloud, the camera exterior orientation parameters are 
defined. 
 
Fig. 4.14 illustrates the relationship between the simulated camera system 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and object coordinate system (𝑋𝑋,𝑌𝑌,𝑍𝑍). The designed network is based 
on the rough point cloud created from the video imaging as mentioned in 
section 4.1. However, the initial camera network will be reoriented during the 
optimization computations of section 4.7 to accommodate for the object 
points with a better coverage and accuracy. 
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Fig. 4.14: Camera and object coordinate systems.  

 
Moreover, the transformation between the object system and the imaging 
system needs to define the initial interior orientation parameters of the 
imaging camera like the focal length, image format, and the pixel size. 
However, for the image orientation, knowing the calibrated interior 
parameters is crucial to have accurate results. These parameters can be 
determined either earlier before use by lab camera calibration procedures or 
computationally during the image orientation by bundle adjustment (self-
calibration). For the planning, however, some approximate values would be 
good enough. 

4.4 Connecting cameras  
To ascertain the complete connected and strong geometric camera network, 
it is important to add connecting cameras between the sub point clouds of 
the detected facades (Fig. 4.15). This is also to avoid the wide baseline 
imaging between the cameras that belong to adjacent facades and to add 
cameras that are viewing points belong to two facades simultaneously. The 
connecting cameras will be designed in a similar way to the facade cameras 
of section 4.3.  
 

𝑇𝑇𝑥𝑥 𝑇𝑇𝑧𝑧 

𝑇𝑇𝑦𝑦 

𝜅𝜅 

𝜔𝜔 

𝜑𝜑 

𝑋𝑋 

𝑍𝑍 

𝑌𝑌 

𝑥𝑥 

𝑦𝑦 

𝑧𝑧 

𝜔𝜔,𝜑𝜑,𝜅𝜅     = 𝑟𝑟𝑜𝑜𝑡𝑡𝑎𝑎𝑡𝑡𝑠𝑠𝑜𝑜𝑛𝑛 𝑎𝑎𝑛𝑛𝐿𝐿𝑜𝑜𝑟𝑟𝑟𝑟 
𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧 = 𝑠𝑠𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎 𝑠𝑠𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑𝑠𝑠𝑛𝑛𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟 
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Fig. 4.15: Connecting camera placement around a building and its importance for 3D 
modelling. 

 
In this thesis, we add three cameras for this task of connecting, however, we 
can place more cameras to avoid any shortage in the imaging coverage.  

4.5 Minimal camera network 
The optimal camera network design as mentioned earlier in chapter 1 is to 
have the minimum number of cameras in an optimal configuration which 
guarantees the sufficient coverage and accuracy, as pre-defined by the user. 
The minimal camera network is expected to produce the same object point 
cloud given by a dense network. In this sense, the minimal network is 
suitable to save the processing time and computer memory during the image 
orientation and dense matching especially when using high resolution 
images. Many application examples are asking to have the minimal networks 
like the disaster mapping and rescue operations or for the documentation of 
some precious cultural heritage objects in museums without disturbing the 
visitors (Alsadik et al. 2014a).  
 
The strategy of finding the minimum number of cameras is based on 
designing a dense imaging block as discussed earlier in section 4.3 and then 
trying to filter out the cameras that are redundant in the sense of coverage 
and accuracy. Finally, optimization can be applied to modify and adjust the 
camera orientation and placement to minimize the expected errors in the 
point cloud.  
 
In this thesis, the minimal camera network can be computed by using one of 
the proposed two different strategies as follows: 
1. Minimal network by filtering for coverage requirements. 
2. Minimal network by filtering for accuracy requirements. 
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Every suggested technique of filtering the dense network has advantages and 
disadvantages related to: the final accuracy of the point cloud, the 
percentage of coverage, and the required time for processing. The minimal 
camera network role in the general workflow of the camera network design is 
shown in Fig. 4.16.  

Filtering for 
coverage

Filtering for 
accuracy

OR 

Dense camera 
network 

Minimal camera 
network 

Optimal camera 
network

 
Fig. 4.16: The minimal camera network in the general workflow of design. 

4.5.1 A minimal camera network based on filtering for 
coverage 

The motivation of using this technique for filtering a dense block of images is 
based on the concept of having at least three cameras viewing 
simultaneously every object point. Therefore, the cameras are considered 
redundant if they only result in coverage by more than three cameras as 
shown in Fig. 4.17. 

 
(a) (b) 

 
(c) 

 
Fig. 4.17: The concept of filtering redundant camera. (a) Before filtering. (b) After 

filtering. (c) Number of covering cameras before and after the filtering. 
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The methodology of filtering is summarized as follows and shown in Fig. 
4.18:  
1- Divide the derived rough point cloud of the object into over-covered and 

fair-covered. Over-covered points, are the points that appear in more 
than three cameras while fair-covered points, refer to the points that 
appear in three cameras. 

2- Label the cameras as redundant or significant based on the appearance 
of the over-covered points and fair covered points. 

3- Arrange the redundant cameras involved in imaging over-covered points 
according to their coverage (number of points) in an ascending order. 
The reason for this arrangement is to cancel the redundant cameras that 
are imaging a fewer number of points and to keep the other cameras. 

4- Check the effect of the camera cancelation on the B/D ratio. 
Accordingly, cancel the camera that is involved in imaging only the over-
covered point group and doesn't produce a large B/D ratio in the 
network configuration. 

5- Test the filtering iteratively according to the computed coverage after 
the camera cancelation and re-label the point cloud in each iteration into 
over-covered and fair-covered. 

6- The same procedure of step 3 is followed, and a new camera is 
cancelled. The filtering is repeated until no more redundant cameras 
involved in imaging only over-covered points.   

4.5.2 A minimal camera network based on the accuracy of 
the object points 

The motivation of using the filtering for point accuracy is based on the 
prescribed relation between the ray intersection geometry or B/D ratio and 
its effect on the predicted precision at the intersection point (𝜎𝜎𝑋𝑋 ,𝜎𝜎𝑋𝑋,𝜎𝜎𝑍𝑍) as 
shown previously in Fig. 1.1. Therefore, the technique is based on 
considering the cameras that have the least impact on the predicted accuracy 
as redundant. 
 
Computationally, the covariance matrix of the unknown points 𝑄𝑄𝑠𝑠 is to be 
evaluated (Appendix A) and the effect of each camera on this error is to be 
computed.  
 
The least effective redundant camera in terms of accuracy will be neglected. 
The whole procedure of filtering will be iterated until the removal of further 
imagery would lead to a violation of the accuracy requirement.  
The filtering procedure based on accuracy is partly similar to the previous 
filtering method of section 4.5.1. The summarized procedure is: 
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1- The cameras involved in imaging over-covered points are classified as 
redundant cameras and is subject to filtering out according to the 
accuracy requirements. 

2- Filter out the redundant cameras based on accuracy by computing the 
covariance matrix Qs of every point. The redundant camera with the least 
impact on the total accuracy will be filtered out.  

 
The workflow of both described filtering techniques of coverage and accuracy 
requirements is shown in Fig. 4.18. 

Over-covered 
point Fair-Covered point
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Camera parameters
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Check visibility 
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Update the 
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Keep the covering 
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If Total accuracy 
statisfied No No

Yes

 
Fig. 4.18: The workflow diagram of filtering for coverage or accuracy requirements. 
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4.6 Visibility requirement  
The sparse point cloud which is generated automatically by the SfM technique 
is to be tested for visibility from the designed camera locations. This visibility 
testing is very crucial for having a realistic and efficient camera network in 
terms of coverage. As explained in chapter 2, there are different techniques 
that can be used for this purpose. For simplicity and because of the sparse 
point cloud at this stage, the preferred methods are either the test of the 
triangular faces normal or to use the HPR method. The effect of using the 
visibility testing to design the camera network is simply shown in Fig. 4.19 in 
a simulated building. After filtering, four cameras are needed to have fully 
visible corners of the building by testing the visibility. However, only three 
cameras are found if the visibility condition is not considered which is 
incorrect.  

   
  (a)     (b) 

       
  (c)     (d) 
Fig. 4.19: The effect of visibility analysis on the design. (a) A simple building 
framework with normals. (b) The dense network configuration. (c) Minimal network 
with visibility test. (d) Minimal network without visibility test. 

4.7 Optimization technique   
As mentioned earlier in this chapter, if the predefined accuracy of the project 
is not reachable after computing the minimal camera network, an 
optimization computation of the camera network will be applied. The 
mathematical optimization overview is discussed in Appendix A. The 
modelling of the camera optimization can be summarized in Fig. 4.20.  
 

Missing corner 
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Fig.4.20: The workflow of the optimization computations. 
 
The developed optimization objective function as shown in Fig. 4.20 will run 
to minimize the total error in the object points (equation 4.7). However, 
there are different constraints that must be satisfied during the optimization 
as will be shown in section 4.7.2.  
 
Generally, the optimized network must be constrained according to the 
allowed B/D ratio, which can guarantee the effective dense reconstruction 
and accurate ray intersection. The adopted B/D ratio is 15% - 30% according 
to Hullo et al. (2009) and the 3 by 3 rules of CIPA (Waldhaeusl and Ogleby 
1994). This ratio is chosen to have a compromise between the higher 
accuracy and the efficient dense matching for the 3D reconstruction.  
 
The derived B/D ratio is also related to the allowable distance between the 
camera and the object as mentioned previously in section 4.3 where the 
depth is a function of the predefined GSD, scale, camera angular field of view 
and accuracy. Moreover, the optimization will compute the camera 
orientation in a way that satisfies the uniform distribution of the image points 
around the image centre as possible. This is supposed to improve the final 
accuracy since more points will appear in the optimal images. However, 
keeping the same points after filtering to minimal network to remain visible 
in the same cameras is necessary to preserve the pre-designed frequency of 
at least three cameras per image point.  
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4.7.1 The formulation of the camera network optimization 
problem 

The optimization problem with camera placement needs to define precisely 
the input and output parameters, which are necessary to formulate the 
objective function 𝑓𝑓(𝑥𝑥) that can guarantee the final goal of optimal camera 
network a shown in the workflow of Fig.4.20. The input and output 
parameters can be listed as follows: 
 
1- The input data and parameters: 

- Point cloud (𝑋𝑋𝑗𝑗 ,𝑌𝑌𝑗𝑗 ,𝑍𝑍𝑗𝑗 𝑗𝑗 = 1:𝑛𝑛) coordinates acquired from video 
stream tracking related to each cluster. 

- The initial exterior orientation parameters for each possible 
(designed) camera (𝜔𝜔𝑑𝑑

𝑜𝑜,𝜑𝜑𝑑𝑑𝑜𝑜, 𝜅𝜅𝑑𝑑𝑜𝑜,𝑇𝑇𝑥𝑥𝑑𝑑𝑜𝑜,𝑇𝑇𝑦𝑦𝑑𝑑𝑜𝑜,𝑇𝑇𝑧𝑧𝑑𝑑𝑜𝑜)    𝑠𝑠 = 1:𝑎𝑎 . These exterior 
orientation elements will be collected in one vector (𝑥𝑥0) which 
represents the initial guess of unknowns for the next optimization 
iteration step. 

 
2- The output parameters: 

- The optimal exterior orientation parameters 
 𝜔𝜔𝑑𝑑 ,𝜑𝜑𝑑𝑑 ,𝜅𝜅𝑑𝑑 ,𝑇𝑇𝑥𝑥𝑑𝑑 ,𝑇𝑇𝑦𝑦𝑑𝑑 ,𝑇𝑇𝑧𝑧𝑑𝑑 for each camera 𝑠𝑠 in the whole network. 

 
As mentioned previously, the mathematical model is represented by 
collinearity equations, and can be linearized by the first-order development of 
Taylor series. Moreover, with the redundant observations, least square 
method is usually followed to compute the adjusted parameters (appendix 
A).  
 
The designed optimization objective of increasing the accuracy is to achieve 
an optimal form of  𝑄𝑄s which is the covariance matrix of object point 
coordinates (𝑋𝑋,𝑌𝑌,𝑍𝑍). Consequently, this will guarantee the maximum accuracy 
(Fraser 1989) with the optimal minimum number of cameras. This objective 
function is expressed in equation (4.7) by minimizing the computed average 
error in (𝑋𝑋,𝑌𝑌, and 𝑍𝑍) for each object within 𝑛𝑛 unknown object points, which is 
computed according to the collinearity equations model. 
 
 𝑓𝑓(𝑥𝑥) = min (∑ 𝑄𝑄𝑠𝑠𝑑𝑑  /𝑛𝑛)𝑛𝑛

𝑑𝑑=1  (4.7) 
 

This is meant to improve the accuracy of the global project, and thus, the 
number of visible points in every image increases after the modification in 
the image orientation. 
 
At this stage, the input parameters are defined in the next step of 
optimization. The most important and costly computational step is to solve 

54 



Chapter 4 

the mathematical optimization problem. This is due to the huge amount of 
input data and parameters to be processed during the computations.   
The camera optimization problem is a nonlinear problem and needs to be 
constrained to obtain real results that satisfy the final goal for the 3D 
modelling of the object. The next subsection 4.7.2 will explain the necessary 
constraints involved in the camera network optimization for 3D modelling. 

4.7.2 The constraints on optimum camera placement 
The camera placement problem is influenced by many design and geometric 
constraints, which can be listed as follows:   

- The lower and upper bounds of the estimated parameters for each 
designed camera 

 

 

−25𝑜𝑜 < 𝜔𝜔𝑑𝑑 < 25𝑜𝑜
−25𝑜𝑜 < 𝜑𝜑𝑑𝑑 < 25𝑜𝑜
𝜅𝜅𝑑𝑑 = 0 𝑜𝑜𝑟𝑟 𝜅𝜅𝑑𝑑 = 90𝑜𝑜

 𝑇𝑇𝑚𝑚𝑑𝑑 − 𝛿𝛿𝑥𝑥 < 𝑇𝑇𝑚𝑚𝑑𝑑 < 𝑇𝑇𝑚𝑚𝑑𝑑 + 𝛿𝛿𝑥𝑥  

𝑇𝑇𝑦𝑦𝑑𝑑 − 𝛿𝛿𝑦𝑦 < 𝑇𝑇𝑦𝑦𝑑𝑑 < 𝑇𝑇𝑦𝑦𝑑𝑑 + 𝛿𝛿𝑦𝑦
0.5𝑎𝑎 < 𝑇𝑇𝑧𝑧𝑑𝑑 < 2𝑎𝑎 ⎭

⎪⎪
⎬

⎪⎪
⎫

 (4.8) 

 
The allowed shifts in the camera position 𝛿𝛿𝑥𝑥 and 𝛿𝛿𝑦𝑦 depend on the available 
workspace that can be occupied around the object. The allowed camera 
height is chosen as stated earlier in section 4.3 to fit a layman. For angles 
𝜔𝜔 and 𝜑𝜑 the allowed change is designed within 50o while 𝜅𝜅 is designed to keep 
the camera either in a portrait or landscape pose. The bounding limits are 
illustrated in Fig. 4.21 clearly where the initial orientation is red coloured. 
 

- The distance between the camera  and the object: 
 

𝑀𝑀𝑠𝑠𝑛𝑛𝑑𝑑𝐿𝐿𝑝𝑝𝐿𝐿ℎ  < 𝐷𝐷𝑟𝑟𝑠𝑠𝑡𝑡ℎ < 𝑀𝑀𝑎𝑎𝑥𝑥𝑑𝑑𝐿𝐿𝑝𝑝𝐿𝐿ℎ ,  𝐷𝐷𝑟𝑟𝑠𝑠𝑡𝑡ℎ = �∆𝑥𝑥𝑑𝑑𝑖𝑖2 + ∆𝑦𝑦𝑑𝑑𝑖𝑖2 + ∆𝑧𝑧𝑑𝑑𝑖𝑖2  (4.9) 

 
Where 
Depth: The distance from the camera 𝑠𝑠 to the cluster of points 𝑘𝑘. 
𝑀𝑀𝑠𝑠𝑛𝑛𝑑𝑑𝐿𝐿𝑝𝑝𝐿𝐿ℎ ,𝑀𝑀𝑎𝑎𝑥𝑥𝑑𝑑𝐿𝐿𝑝𝑝𝐿𝐿ℎ : The minimum and maximum allowed distance between 
the camera and the object. These values are chosen in most of our 
experiments in the range of 2 – 30 m respectively.  
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Fig. 4.21: The bounding limits of the optimal camera orientation.  
 
- The distance between the designed cameras:  

𝑀𝑀𝑠𝑠𝑛𝑛𝐵𝐵  < 𝐵𝐵 < 𝑀𝑀𝑎𝑎𝑥𝑥𝐵𝐵 , 𝐵𝐵 = �𝐷𝐷𝑥𝑥𝑑𝑑𝑗𝑗2 + 𝐷𝐷𝑦𝑦𝑑𝑑𝑗𝑗2 + 𝐷𝐷𝑧𝑧𝑑𝑑𝑗𝑗2  (4.10) 

Where 
𝐵𝐵: The distance between camera 𝑠𝑠 and 𝑗𝑗. 
𝑀𝑀𝑠𝑠𝑛𝑛𝐵𝐵 ,𝑀𝑀𝑎𝑎𝑥𝑥𝐵𝐵 : The minimum and maximum allowed distance between cameras, 
according to the predefined range of B/D ratio. 
 
- Geometric design constraint:  
This constraint is formulated by minimizing the absolute value of the angle 
between the facade mean normal and the designed camera optical axis as in 
equation (4.11).  
 
𝛿𝛿 < 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑑𝑑       𝑓𝑓ℎ𝑟𝑟𝑟𝑟𝑟𝑟    𝛿𝛿 = |𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑| (4.11) 
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑜𝑜𝑟𝑟𝑎𝑎𝑎𝑎𝑜𝑜 𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 𝑡𝑡ℎ𝑟𝑟 𝑜𝑜𝑜𝑜𝑠𝑠𝑎𝑎𝑜𝑜 𝑠𝑠𝑜𝑜𝑠𝑠𝑛𝑛𝑡𝑡 𝑟𝑟𝑟𝑟𝑡𝑡  
𝐶𝐶𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑡𝑡ℎ𝑟𝑟 𝑑𝑑𝑟𝑟𝑟𝑟𝑠𝑠𝐿𝐿𝑛𝑛 𝑠𝑠𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎 𝑎𝑎𝑥𝑥𝑠𝑠𝑟𝑟 𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜𝑛𝑛  

 +𝛿𝛿𝑦𝑦  

-𝛿𝛿𝑦𝑦  
-𝛿𝛿𝑥𝑥  +𝛿𝛿𝑥𝑥 

2m  

0.5m 

𝛿𝛿𝑧𝑧  
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- The constraints of the image coordinate:   
This means to constrain the average of the image coordinates 𝑥𝑥𝑠𝑠����, 𝑦𝑦𝑠𝑠���� (in p.p. 
system) to equal zero. This constraint is supposed to modify the camera 
orientation to distribute the points evenly around the image centre. 
 
𝑥𝑥𝑠𝑠��� = 0 
𝑦𝑦𝑠𝑠���� = 0   (4.12) 

   
- To keep the minimum of three viewing cameras per point as well designed 

before running optimization, another constraint is formulated. Every 
image point is constrained to remain observed from the same camera 
after optimization. 

 
−𝑓𝑓/2 < 𝑥𝑥𝑠𝑠𝑑𝑑 < 𝑓𝑓/2 
−ℎ/2 < 𝑦𝑦𝑠𝑠𝑑𝑑 < ℎ/2 � (4.13) 

 
Where ℎ and 𝑓𝑓 represent the image format height and width respectively. 
These values are chosen in this thesis as for Canon 500D to be 14.8 mm and 
22.3 mm, respectively. 
 
- The constraint  of covered area by image points  
This constraint can be used to support the appearance of maximum number 
of image points in the optimal images beside their good distribution. This is 
done mathematically by computing the convex hull area of the points.  

4.8 Summary of methodology  
The algorithm of optimization is summarized as follows and the general 
diagram of the camera network design is shown in Fig. 4.22:  
 
Input: A vector function 𝑥𝑥0 of the initial parameters estimation, and 𝑛𝑛 point 
cloud coordinates P.  
Output: A vector function 𝑥𝑥� of the optimized camera parameters, minimizing 

𝑓𝑓(𝑥𝑥) =  �𝐿𝐿𝑑𝑑𝑚𝑚𝑡𝑡𝐿𝐿 𝑄𝑄𝑠𝑠
3 

� for each point i. 

Algorithm: 
Call function optimcon: (𝑥𝑥0) optimal constraints 
Call function optimcam: (𝑥𝑥0) objective function.  
     [𝑥𝑥�,fval] =fmincon(optimcam, 𝑥𝑥0,lb,ub,optimcon,options); 
end  
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Fig. 4.22: The general workflow of the camera network design. 

4.9 Experimental tests  
The main aim of the experiments is to test the developed technique. 
Therefore, we implemented experiments on three different cases, a simulated 
network, a building, and a statue. The design is based on having a rough 
point cloud as described previously. These point clouds are scaled into 
ground truth dimensions during the derivation process; however, a local 
coordinate system is adopted in these cases. The imaging is simulated as 
mentioned earlier with Canon - 18mm with a 22.3×14.8 mm2 frame size and 
4752×3168 pixels resolution. The image measurement precision of 10 𝜇𝜇m is 
assumed to evaluate the accuracy. The designed B/D ratio is selected as 
small as 0.1 to create a dense imaging block for the building and the statue 
tests respectively. In the first test of a simulated point cloud, the two filtering 
techniques for coverage and accuracy will be investigated and compared to 
the optimal network. In the second test of a building in section 4.9.2 the 
filtering methods for coverage and for accuracy will be tested beside the 
optimal network. In section 4.9.3, a camera network is designed for a rough 
point cloud from a statue where the filtering for coverage is applied and then 
compared to the dense and the optimal network. The comparison between 
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the camera networks in the tests are based on evaluating the maximum and 
average errors in the point cloud beside the number of covering cameras.  

4.9.1 Simulation test  
A simulation of a dense imaging network is created where 22 cameras are 
viewing eight points as shown in Fig. 4.23. The overlap ratio is selected as 
80% to create a dense camera network.  
 
To evaluate the expected accuracy in the object points, the standard 
deviations (𝜎𝜎𝑥𝑥,𝜎𝜎, ,𝜎𝜎𝑧𝑧), are estimated by image triangulation (image 
intersection). Therefore, a perturbation of normally distributed errors with a 
standard deviation of 10 𝜇𝜇m is added to the image coordinates as mentioned 
earlier.  

 
Fig. 4.23: A simulated dense camera network. 

 
The ellipsoid of errors is evaluated as shown in Fig. 4.24a with an 
exaggerated scale of 100 to visualize the expected error of the object 
points. The optimal configuration of the imaging network is shown in Fig. 
4.24b with the computed ellipsoid of errors.  
 
The amount of coverage after optimization is improved significantly as 
shown in Fig. 4.24d. The optimization run is illustrated in Fig. 4.24c which 
shows the stability and convergence of the solution. 
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(a) (b) 

 
  

(c) (d) 
Fig. 4.24: (a) The point precision before optimization. (b) The point precision after 
optimization. (c) The convergence of solution of optimization. (d) The number of the 
covering cameras before and after the optimization. 
 
The filtering techniques are also implemented to have the minimal camera 
network with respect to coverage and accuracy requirements of minimum 
three cameras. The first filtering is implemented for coverage as shown in 
Fig. 4.25a to preserve an average B/D ratio of 30%. Optimal network is 
shown in Fig. 4.25b and the run of the optimal solution is shown in Fig. 
4.25c.   

point precision= 3 mm point precison= 2.4 mm 
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(c) (d) 

Fig. 4.25: The simulation of the filtered imaging network and results of filtering and 
optimization. (a) Filtered net for coverage. (b) Optimal net. (c) Optimization run plot. 
(d) The number of the covering cameras before and after the optimization. 
 
The filtering for accuracy requirements is also applied to the dense network 
to preserve the average point precision to less than 10 mm. The filtering 
resulted in four cameras which are then optimized as shown in Fig. 4.26. 
Adopting average point precision rather than the precision of the worst 
reconstructed point in this method is because of the restriction of camera 
altitude. As stated in section 4.3, the camera accessible height is restricted in 
the range of 0.5 – 2 meters of the camera operator. Therefore, worse points 
are usually found in the upper parts of objects where the ray's intersection is 
weak and the accessibility is limited. This implies to design the filtering to 
preserve the average point precision.   
  

(a) (b)  

point precision = 7.4mm point precision = 6.1 mm 
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(a) (b) 

  
(c) (d) 

Fig. 4.26: (a) The point precision after the filtering for accuracy. (b) The point 
precision after optimization. (c) The convergence of solution of optimization. (d) The 
frequency of covering cameras before and after the optimization. 

 
It must be mentioned that the optimizations stopped because the size of the 
current step is less than the default value of the step size tolerance and 
constraints are satisfied to within the default value of the constraint 
tolerance.  
 
As a conclusion, the dense image network provided with the highest possible 
positioning accuracy of the object points. However, after optimization, the 
network in Fig. 4.24b provided with better positional accuracy. This seems 
logical since there are more redundant observations of image rays per point. 
The filtering approach based on coverage with five cameras gave slightly 
better accuracy than the filtered network based on accuracy with four 
cameras. The reason to have five cameras after using the coverage filtering 
method is based on satisfying an average B/D ratio of 30%. However, in 
terms of the minimum network that satisfies all the designing constraints, the 
accuracy filtered network is the optimally filtered network. 
 
For optimal networks, the used method proved in all the cases the stability of 
the solution and convergence as shown in Figures 4.24c, 4.25c and 4.26c. 
Moreover, better accuracy and coverage are also gained after optimization of 
Figures 4.26d,4.25d and 4.24d. It is worth to notice, that the errors in the 
viewing or depth direction are larger and this is logical since it is related to 

point precision = 8.7mm point precision = 6.2mm 
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the B/D ratio. A smaller error can be attained whenever a larger base 
between the cameras found as described in chapter 1.    

4.9.2 Building\ 
A real point cloud has been extracted from a building where a video stream 
(Fig. 4.27) of 177 frames is captured around the building with a resolution of 
1920*1080 pixels. 

 
Fig. 4.27: Video stream for a building (sample images). 

To create a rough point cloud, the images are processed by using SfM to get 
a sparse point cloud of 3320 points of the building as shown in Fig. 4.28a and 
the rough model of Fig. 4.28b. The rough point cloud is segmented by using 
the presented technique of cloud subdivision mentioned in section 4.2 and 
the results are summarized in Fig. 4.28c and Fig. 4.28d. 

 
 

 

 

(a) (b) 

 

 
(c) (d) 

Fig. 4.28: (a) The video imaging track around the building. (b) The derived rough 
model and mesh. (c) The image morphological operation before filtering. (d) 

Subdivision result. 
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The camera network design is implemented per facade and results in a total 
of 158 cameras within six blocks with the addition of the connecting cameras 
as shown in Fig. 4.29. This design is automatically applied with a theoretical 
standard error 𝜎𝜎𝑚𝑚𝑦𝑦𝑧𝑧  of 10mm in the object space. The distance between the 
cameras and the object of 10 meters is designed to satisfy the required 
accuracy (Wenzel et al. 2013). This is based on assuming an image 
coordinates measurement precision of 10 𝜇𝜇m.     

 
Fig. 4.29: The building initial dense imaging block before filtration. 

 
Hence, the dense camera network is filtered according to both methods of 
the coverage requirements of minimum three cameras and the filtering for 
accuracy, as discussed in section 4.5, and results with the imaging 
configuration of Fig. 4.30a, and 4.30b, which consists of 81 and 86 cameras 
respectively, after the addition of the connecting cameras. The optimization 
algorithm is optionally followed after filtering for accuracy (Fig. 4.30b) to find 
the final optimal imaging configuration as shown in Fig. 4.30c. The 
optimization implemented on each sub-network of a facade separately and 
then gathered to compose the total network (Fig. 4.30c). The connecting 
cameras are then added to complete the camera network where two cameras 
are added between each adjacent detected façade. 
 
It can be noticed form Fig.4.30 that a significant reduction in the number of 
the cameras is found through the two filtering techniques. Moreover, 
Fig.4.30b shows a better camera distribution offered by the filtering for 
accuracy technique compared to the filtering for coverage technique in 
Fig.4.30a.  
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  (a) 

  
(b) 

 
(c) 

Fig. 4.30: Imaging network configuration of the building. (a) Filtered network for 
coverage. (b) Filtered network for accuracy. (c) Optimal network. 

 
To validate the network accuracy, error estimation is computed for each point 
in the cloud and plotted as an exaggerated ellipsoid of errors in the same 
scale as illustrated in Fig. 4.31. The sizes of the ellipsoids of errors give a 
good visual indication about the possible errors in the different parts of the 
object. It can be noticed that the accuracy is degraded after the filtering of 
redundant cameras (Fig. 4.31b) as explained in section 4.5. However, the 
optimal network and when the cameras are re-oriented according to 
constraints and the accuracy slightly improved as shown in Fig. 4.31d. This 
accuracy improvement is achieved despite having the same number of 
cameras and the frequency of coverage (Fig. 4.33) of the filtered network. It 
is worth to mention that the maximum standard deviation indicated in Fig. 
4.31 refer to the largest axis of the ellipsoid of the error of the points. The 
average point precision is also listed in Table 4.1. 

no. of cameras=81 

no. of cameras=86 
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(a) 

 

 

 
(b) 

  
(c) 

 

 

 
(d) 

Fig. 4.31: The exaggerated error ellipsoid plot for the building experiment. (a) Dense 
network. (b) Filtered network for coverage. (c) Filtered network for accuracy. (d) 

Optimal network. 

Max. std.dev.=1.3cm  

Max. std.dev =7.6cm 

Max. std.dev =1.9cm 

Max. std.dev =1.4 
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The optimization run is shown in Fig. 4.32 for each detected façade and a 
maximum function evaluation count of 1000 is selected for the stopping 
criteria. Otherwise, the solution is stopping with less iterations if the local 
minimum and the constraints are satisfied.   
 

 

 
Fig. 4.32: Log plot of optimization runs for each detected façade of the building.  

 
Fig. 4.33 illustrates the amount of coverage for every point in the dense 
,filtered and optimal networks respectively. The low number of covering 
cameras is located in the upper parts of the building facades where the 
visibility is limited.   

  
(a) (b) 

  
(c) (d) 

Fig. 4.33: The number of the viewing cameras per point with the average in a yellow 
line. (a) The coverage in the dense network. (b) The coverage of the filtered network 
for coverage. (c) The coverage of the filtered network for accuracy. (d) The coverage 
of the optimal network. 
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4.9.3 Statue 
The second test is implemented on a statue point cloud (283 points) which is 
generated automatically by the SfM technique from the video imaging stream 
of the statue by using Boujou software (Vicon 2010) as illustrated in Fig. 
4.34a. The point cloud is turned into a surface grid triangular mesh by using 
Meshlab (2010) to test the visibility with the face normal (Fig. 4.34a). A 
simulation of a dense block of 62 cameras in two strips with a B/D ratio of 
0.2 is designed around this statue in a circular domain. The accessible height 
of the camera operator is assumed as mentioned previously to be in the 
range of 0.5-2 meters with a depth-distance of two meters to satisfy the 
required nominal accuracy of 2 mm. The designed dense camera network is 
illustrated in Fig. 4.34b where the cameras are oriented in the portrait pose 
which is more suitable to cover this kind of objects extending in the up (z) 
direction. 
Consequently, as in the previous test, the algorithm of filtering either for 
coverage or accuracy starts to find the minimal camera network by cancelling 
one redundant camera iteratively. In this experiment, the filtering for 
coverage is used which is stopped after the filtering of 28 cameras, and 
results in 35 necessary cameras. The remaining cameras guarantee the 
minimum of three intersecting rays for each point with an average B/D ratio 
of 0.3. The optimization algorithm is followed to find the final optimal imaging 
configuration, which satisfies all the aforementioned constraints of section 
4.7.2 as shown in Fig. 4.35b. The bounds of the camera orientation 
parameters are selected to be in the range of one meter of the designed 
camera coordinates and five degrees of the initial angular orientation. This is 
a matter of user input basing on the object complexity, processing time and 
accessible space around the statue.   
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(a) 

 
(b) 

Fig. 4.34: (a) Statue surface mesh. (b) The dense imaging block.  

            
(a) (b) 

Fig. 4.35: Statue imaging network. (a) Minimal network before optimization. (b) After 
optimization. 

 
To validate the network strength, internal error assessment is computed for 
each point in the cloud of dense, filtered and the optimal network. The 
exaggerated ellipsoids of errors are illustrated in Fig. 4.36, and reported in 
Table 4.1. The precision of the image coordinates is simulated with a 10 𝜇𝜇m 
as mentioned earlier.  
 
It can be noticed in a similar way to the building experiment that the errors 
in the upper part of the statue are larger than the errors in the lower parts. 
This is a result of the weak ray intersection and the limited visibility from a 
layman height.  
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It is worth to mention the time spent for processing in the statue case. The 
filtering with respect to the coverage requirements method consumed 25 
seconds to reach the minimal network of 35 cameras. The optimization runs 
for 9 iterations before meeting the stopping criteria as shown in Fig. 4.37, 
and consumed 14 minutes for processing on Dell latitude E6540 with Intel 
processor Core i7 of 2.7 GHz CPU. However, different factors like the 
programming language and the proficiency to prepare the code influenced on 
the time needed for the implementation. It must be noted that the stopping 
criteria can be determined either by setting the number of iterations or by 
setting the threshold of the minimum step length which is usually embedded 
in the optimization algorithm. Finally, the coverage amount of points before 
and after the filtering and optimization is shown in Fig. 4.38 and listed in 
table 4.1. 
 

  
(a) 

     

 

 
(b) (c) 

Fig. 4.36: The error ellipsoids for the statue points in three cases. (a) Dense network. 
(b) Filtered network. (c) Optimal network. 

 

Point precision =1.7mm 
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Fig. 4.37: Log plot of optimization runs of the statue imaging. 

 

 
(a) (b) (c) 

Fig. 4.38: The number of viewing cameras for each object point. (a) Dense network. 
(b) Filtered network. (c) Optimized network.  

 
It is worth to mention that points with weak coverage (<5 cameras) are 
located near the statue head where either the visibility is limited or a result of 
the poor ray intersection geometry.  

4.9.4 Discussion of results  
The summarized results of the two cases of a building and a statue in terms 
of estimated precision, mean coverage and the number of cameras are 
shown in Table 4.1.  
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Table 4.1: Summary of results. 

Type Cameras Point precision 
[𝑎𝑎𝑎𝑎] 

Average coverage 
(cameras) 

Building case study 
Dense block 158 1.7 31  
Filtered network  
(Coverage) 81 2.5 17  

Filtered network  
(Accuracy) 86 2.4 17  

Optimal network 86 2.2  17   
Statue case study 

Dense block 62 1.0   19 
Filtered network 
(Coverage)  35 2.9   10 

Optimal network 35 1.7   11 
 
The summarized results of both experiments showed several benefits of the 
proposed camera network design.  
 
Table 4.1 shows a high percentage of average coverage for the building and 
statue cases after filtering. This coverage will guarantee a minimum of three 
cameras per point which is suitable for the task of 3D modelling. The reduced 
number of cameras after filtering will offer a significant reduction in the 
processing time for 3D modelling and SfM while keeping the sufficient 
coverage of points. We presented in our research paper (Alsadik et al 2014a) 
a comparison between dense and reduced networks in terms of time 
consumption which showed a 60% time reduction.  
 
For the building test, the estimated maximum error in the point cloud showed 
that filtering for accuracy is better than using filtering for coverage. However, 
the time needed for filtering to accuracy method is twice the time for filtering 
to coverage method. This is logical because of the need to compute the 
covariance matrix for every point when using the method of filtering for 
accuracy. 
 
Optimization also introduced a slight improvement in the accuracy obtained 
in the filtered networks in both experiments. The computations in the two 
experiments showed a stable convergence of the solution to optimal 
minimum. However, optimization is a time consuming procedure and the 
experiments showed that the camera networks after filtering mostly satisfy 
the required accuracy. Therefore, optimization is better to be considered 
when the error after filtering is exceeding the acceptable error limits of a 
project.    
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4.10 Summary  
In this chapter, we developed a method to find the optimal camera network 
configuration for the 3D modelling. We started with a simple iterative camera 
filtering procedure where a dense, short base camera network is initially 
designed according to the imaging standards. The dense network is then 
filtered to reach the minimum number of at least three cameras for each 
point. Then we used the nonlinear constrained optimization techniques to 
improve the positional accuracy of the point cloud by adjusting the camera 
initial orientation to improve the estimated positional accuracy. 
 
Three case studies of a simulated object, a building, and a statue were tested 
and indicated a significant reduction in the number of the designed initial 
dense camera networks. The cameras in the first test of a building are 
reduced after filtering from 158 to 81 and 86 respectively, while for the 
statue case, the 62 cameras are reduced to 35. This strategy is beneficial to 
have a good covered imaging configuration with a minimum number of short 
baseline cameras. Consequently, it is shown in Table 4.1 that despite the 
significant reduction of the number of cameras after filtering, the accuracy in 
the three case studies is only slightly degraded. 
 
It can be seen that our optimization approach improved the degraded  
accuracy after filtering by using optimization techniques, which gives a 
slightly improved point cloud accuracy and average coverage as shown in 
Table 4.1. The estimated errors are complying with the required accuracy for 
the modelling of the building and the statue respectively. 
 
Chapter 7 is devoted to investigate the proposed methodology, including 
filtering and optimization on a complete experiment with external validation 
of a cultural heritage church building.  
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Chapter 5 Guided Image Capture and Post 
Processing 

This thesis chapter aims to introduce a practical, simple, and efficient way to 
guide the non-professional camera operator to the optimal camera location 
which is discussed in chapter 4.  
 
However, as mentioned in chapter 1, the question is how the system guides 
the camera operator to the correct location for capturing the designed images 
while maintaining the same designed angular orientation. 
 
The key idea as proposed in this chapter is to create synthetic images of the 
study object based on the optimal orientation.  
 
A synthetic image is an artificial image as it would be captured by a given 
camera with the optimal orientation. The motive to create the synthetic 
images is the suitability of these images to guide even non-professionals to 
the designed image orientation. Therefore, the camera operator can visually 
interpret the images and try to capture them in reality. Moreover, the 
synthetic images offer a powerful tool to verify whether the image is taken 
from the right spot and pointing in the desired direction. Therefore, matching 
between the real captured images and the synthetic images is applied to 
decide the amount of equivalence or similarity.  
 
After the completion of image capture, a post processing will be needed to 
complete the image orientation and the dense matching to have a 3D point 
cloud. As mentioned in the research problems of chapter 1, image orientation 
holds many difficulties in the matching phase and the bundle adjustment like 
in the case of wide baseline configuration, illumination changes, or when 
repetitive pattern and homogenous texture areas exist. 
 
The suggested improvement in the mentioned post processing, is to: 
1- Support the SIFT matching by restricting the matching area. 
2- Guide the image matching to avoid the full pairwise matching method. 

This means, based on the designed network, to only match images that 
should be overlapping. This will save time and avoid mismatching with 
repetitive textures. 

3- Support the bundle adjustment with the proper initial parameters.    
 
This chapter will be divided into two main parts: the guiding of the image 
capture and post processing. 
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5.1 Guiding the image capture 
The proposed concept is based on the previously taken video streaming and 
SfM technique (chapter 4). Although this was used to create, a rough point 
cloud for the purpose of optimal camera placement, it is also useful to 
support with the necessary and sufficient image texture of the target object. 
The key idea is to create multiple synthetic images of the object as seen from 
the optimal camera locations and viewing directions. In addition, image 
matching is needed to decide about the amount of equivalence or similarity 
between the real captured and the synthetic images, i.e. to estimate how 
well the optimal situation is reached per shot. 
 
Consequently, if the matching is sufficient within the allowed limits as will be 
shown in section 5.1.1, then the orientation of the real captured images will 
be computed.  
 
The impact of adding the real image on the total orientation accuracy is 
validated before proceeding for the next image capture until completing the 
whole imaging network. Fig.5.1 illustrates the general workflow of the 
guiding system. 
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Fig. 5.1: Workflow of the guiding imaging system. 

5.1.1 Creating the synthetic images  
The first step of creating synthetic images is to compute a 3D triangulated 
surface of the previously derived rough cloud by an efficient surfacing 
technique like ball pivoting (Bernardini et al. 1999) or Poisson reconstruction 
(Kazhdan et al. 2006). This is followed with texturing the mesh by finding the 
suitable covering pre-oriented video images that were used in the previous 
step described in chapter 4. Accordingly, an image resampling is 
implemented to get a textured 3D model as shown in Fig. 5.2. This textured 
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3D model will be projected, based on the designed orientation parameters, to 
the desired optimal images to create the synthetic images. 
 

 
Fig. 5.2: Low-detailed 3D textured model. 

 
The information about the textured 3D model is simply transformed in two 
steps back to the planned synthetic images. The first step is to project the 3D 
coordinates back into the 2D pixel coordinates and the second step is to 
assign the texture for each triangular face. Therefore, each textured 
triangular face (three vertices and the patch RGB colour) is transformed as 
illustrated in Fig. 5.3 from the texture image to the corresponding synthetic 
image by linear interpolation. 
 
The transformation is applied to each face by moving across a bounding 
rectangle and assigning the pixel value from the texture image to each pixel 
that falls inside the triangle. It must be mentioned that a low resolution (e.g. 
640*480) pixel is chosen to compose the synthetic images. This low image 
resolution consumes less processing time to comply with the fast 
implementation needs.  

Triangulation  Texturing   
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Fig. 5.3: Texture transfer of synthetic images. 

 
An additional visibility condition is added to avoid self-occlusions. This is 
applied by using the z-buffering technique (chapter 2). Fig. 5.4 and Fig. 5.5 
illustrate the method of creating free self-occluded synthetic images. 
 

 
Fig.5.4: Removing occluded pixel values by distance buffering. 
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Fig. 5.5: Synthetic image creation with and without self-occlusion computation. 

5.1.2 Real image capture 
After the creation of synthetic images, as shown in the previous section, the 
images should be captured in reality. The captured HR images should be 
matched in real time with the synthetic images to decide if they are taken 
correctly within a threshold limit. Further, every image is re-captured if it 
doesn't match accurately until capturing the proper one. 
 
In practice, the guiding of image capture can be designed by connecting the 
camera to a laptop. Then, to use software that is capable to show the live 
view synchronized images like Eos Utility software for Canon cameras as 
shown in Fig. 5.6. This will enable the camera operator to match visually the 
camera live view with the synthetic image for real image capturing. 
Subsequently, every captured image is stored in a folder and also tested if it 
matches the synthetic image and preserves the accuracy as will be discussed 
in the following sections.  

Occlusion test: on 
 

Occlusion test: 
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Fig. 5.6: Software-hardware illustration of the guiding system. 

5.1.3 Matching between real and synthetic images  
To decide whether the captured images are correctly taken and similar to the 
synthetic images, image matching is applied by using the scale invariant 
keypoint detector of SIFT (Lowe 2004). The reduction of the image resolution 
to the same synthetic image size is beneficial to reduce the processing time 
of the image matching to satisfy, as mentioned, with the fast implementation 
needs. However, the matching probably suffers from some blunders caused 
by the poor texture of some object parts in the synthetic images, which can 
deteriorate the results. These blunders can be filtered according to the 
following strategy: 
 
• Restrict the matching space with respect to the synthetic image 

foreground 
Synthetic images based on the derived model as mentioned in section 
5.1.1 will have a white background. Since the images should be taken, 
nearly, in the same pose, the matching space is restricted. The 
restriction is based on the convex hull of the detected keypoints in the 
synthetic image. This convex hull will define approximately the outer 
boundaries of the study object texture as illustrated in Fig. 5.7. Then, all 
the keypoints of the real image that are detected outside the convex hull 
will be neglected for matching. This is beneficial to reduce the number of 
wrong point matches and to reduce the matching cost. However, some 
parts of the white background can also be included within the convex 
hull based on the object shape (Fig.5.7). 
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Fig.5.7: Restriction of the matching space. Left: SIFT points in synthetic image. Right: 

Restricted SIFT points in real image. 
 

• Match the images by SIFT 
After the initial filtering of background points in the real image, the SIFT 
matching technique is applied, which is invariant to scale, rotation and 
illumination change. However, there is still a possibility of mismatching 
as shown by the yellow lines in Fig. 5.8.  
 

 
Fig.5.8: SIFT matching between real and synthetic images. 

 
• Statistical blunders detection and prior removal  

To remove the blunders of the SIFT matching two simple tests are 
applied as follows: 
- Since the images are assumed to be taken, nearly, in the same pose, 

the corresponding matching lines are expected to be parallel as 
shown by the red lines in Fig. 5.8. Therefore, the 𝑦𝑦 − 𝑠𝑠𝑎𝑎𝑟𝑟𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑥𝑥 between 
the corresponding points is computed. Then, matches that have 
exceeded a threshold of 50 pixels of y-parallax will be excluded, 
which is one tenth of the used image height. 

- To support the blunder removal, an additional statistical approach is 
used. This is simply applied by computing the average distance 
between the homologue matched points, and filtering out the match 
distance if it exceeds three times the standard deviation 3𝜎𝜎 of the 
distance. This is motivated by the assumption of having 
approximately constant distance between equivalent image points of 
the same orientation. Fig.5.9 illustrates the refined matching result.  
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Fig.5.9: The refined points matching between synthetic and real image. 

 
In addition, to validate if the real captured images are accepted, we have to 
compute the camera orientation by space resection as will be discussed in the 
next section. It must be noted as shown in Fig.5.9 that few blundered 
matches still exist, however, the blunder detection by using data snooping 
(Ghilani and Wolf 2006) will be used in the adjustment problem to ensure an 
accurate determination of the real-captured image orientation. 

5.1.4 The validation of the real captured images   
In order to validate the real-captured image before proceeding to the next 
image, the camera orientation parameters will be computed and compared to 
the optimal ones. The orientation parameters for a single image are usually 
computed in photogrammetry by space resection with collinearity equations. 
The minimum number to apply the space resection computations is three 
points to solve the image exterior orientation parameters. 
 
However, there is a need to determine the space XYZ coordinates of the 
matching points to implement the resection. As mentioned in section 5.1.1, 
every pixel in the synthetic images will have its 3D location as well. However, 
in case to avoid consuming a large computer memory, another approach can 
be followed by interpolating, only, the location of the SIFT points:  
 
The XYZ coordinates of the matching SIFT points are interpolated by 
projecting the 3D mesh to the synthetic images (Fig.5.10a). This is followed 
by using the inverse distance weight (IDW) interpolation of Equation 5.1. The 
interpolation is constrained to the triangle that contains the projected SIFT 
points in the surface mesh to get an accurate result as shown in Fig.5.10b. 
However, it may happen that the same matching point represents a triangle 
mesh vertex and then there is no need for the interpolation.    
 

𝑋𝑋 =
∑  𝑋𝑋𝑖𝑖𝑑𝑑𝑖𝑖
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   (5.1) 

 
where 𝑑𝑑 is the distance between the three triangle vertices and the 
interpolated point. 
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(a) 

 
(b) 

Fig. 5.10: Space coordinates interpolation of the matching points. (a) The surface 
mesh projected on the synthetic image. (b) The coordinates interpolation. 

 
After computing the XYZ coordinates of matching points, a space resection is 
applied to the real images with the aid of the data snooping (Ghilani and Wolf 
2006). This is due to the possibility of still having a wrong SIFT matching 
result. 
After completing the real-captured image orientation by space resection as 
shown in Fig.5.11, it is possible to validate whether the image is accepted as 
the desired optimal image or not. This validation is done by incorporating the 
orientation of the real image in the imaging network instead of the designed 
one and then estimating the accuracy of the point cloud by bundle 
adjustment. Since the accuracy requirement is already defined before 
starting the project, it is easy to decide either to accept or reject the 
captured image. Therefore, if the accuracy is significantly degraded, another 
try for taking the real image is to be done. The process is continued 
successively until the completion of the whole imaging network.  
  

Synthetic image   surface mesh    

XYZ  

XYZ  XYZ  
? 
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Fig. 5.11: The space resection of the real-captured image   

 
The algorithm of the validation of every captured image is illustrated in Fig. 
5.12. 
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Fig. 5.12: The validation of the real captured image workflow.  
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Fig. 5.13 illustrates the proposed graphical interface of the guiding system 
and validation. 
 

 
Fig.5.13: The guiding system and validation. 

 

5.2 Post processing computations 
After the completion of capturing images as described in section 5.1, the post 
processing for the camera orientation is followed. First, the overlap 
connection between the images is to be identified by what is called the 
connectivity graph (chapter 1). Second, the use of the scene geometry and 
the initial camera orientations for a robust tie point matching and bundle 
adjustment will be presented.  

5.2.1 Image connectivity for matching 
The image connectivity is recomputed at this stage based on the real 
captured images with their new orientation which is slightly different from the 
designed orientation. These differences could lead to a change in the image 
connectivity.   
The image connectivity of matching in our approach can be extracted by 
projecting back the sparse object points that are used in the planning steps. 
This helps to decide their visibility status within the captured images by 
using: 
- The designed exterior orientation parameters. 
- The surface points and their normal directions. 
- The interior camera parameters.   
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Therefore, the decision of having two overlapped images is made by testing 
the existence of shared points that are visible in both images. Fig.5.14 
illustrates the image connectivity graph for the guided matching of 106 
images around a building (Alsadik et al. 2013b). The very dense tree of the 
large set of images indicates the necessary huge amount of data to be 
handled and processed in the full pairwise matching.  
 

 
(a) 

 
(b) 

 
(c) 

Fig.5.14: (a) The image connectivity graph. (b) The matching matrix. (c) The pre-
planned network of 106 images. 

 
The mismatching of pairs in the image connectivity can result in a wrong 
orientation of the SfM pipeline and bundle adjustment. Therefore, it is not 
only a problem of the wide baseline imaging, but also the effect of repetitive 
pattern on the full-pairwise matching results where the symmetric pattern in 
the object can result in mismatching. Fig. 5.15 shows an example of the 
wrong orientation of an image sequence when using the SfM technique 
despite the use of RANSAC for outlier rejection. The repetitive pattern of the 
fountain sinks in Fig. 5.15a affects the tie point matching which can be 
avoided by guiding the connectivity between the captured images (Fig. 
5.15c). In addition to the successful orientation, guided matching offers a 
shorter time for processing because of the reduced number of image pairs to 
be tested for matching.  
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(a) 

 

  
(b) 

  
  

(c) 
Fig.5.15: Mismatching in the full pairwise approach leads to unsuccessful orientation. 
(a) The image pair. (b) Full pairwise approach (VSfM). (c) Guided approach (VSfM). 

5.2.2 Guided image matching by exploiting the object model 
Once the image connectivity is defined, the tie point matching is only applied 
in the stereo pairs which are linked within the connectivity graph. Moreover, 
we propose a method to invest the pre-knowledge of camera orientation and 
scene geometry. The approach is to use the derived rough 3D model as will 
be shown in this section. This approach should support the matching by 
providing a very good approximation for the corresponding tie points in the 
stereo pairs and reduce the processing cost compared to search the full 
image resolution. In addition, possible problems due to symmetries or 
repetitive textures occurring at opposite façades will be avoided (e.g. Fig.1.4 
and Fig.5.15). 

frontal back face 

Mismatching  
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The rough 3D scene geometry is already employed in guiding the camera 
operator in section 5.1 where each synthetic image is created and also 
assigned the 𝑋𝑋𝑌𝑌𝑍𝑍 scene information per pixel. This 3D information will be 
transformed to the real images as follows: 
For each real image, a 2D affine transformation is applied because it does not 
fit exactly to its equivalent synthetic image. However, HR real images are 
first downsampled to the same size of the synthetic images before the 
transformation. The parameters of the transformation are computed using 
the detected corresponding keypoints in both, the synthetic and real images. 
The 𝑋𝑋𝑌𝑌𝑍𝑍 information is then passed from the synthetic image (section 5.1.1) 
to the keypoints of the real image (Fig. 5.16). 
 
The next step is to apply the tie points matching based on the predefined 
connectivity (section 5.2.1) and the 𝑋𝑋𝑌𝑌𝑍𝑍 of the keypoints as well as the 
approximate exterior orientations. The proposed guided matching is followed 
by projecting each keypoint location back into the full resolution image by 
scaling. Then, search windows are defined around the keypoints where the tie 
points matching will be restricted as shown in Fig. 5.16. The window size is a 
user-defined parameter and depends on several factors, including the full 
resolution of the images, the initial image orientation, and the density of the 
tie points. The experiment in section 5.3 compares SIFT, SURF (Bay et al. 
2008) and the normalized cross correlation (NCC) method.  
 
Furthermore, blunders are filtered through a RANSAC procedure using an F-
Matrix estimation. Accurate matching will certainly improve the image 
orientation results and the 3D modelling task at the end. 
 

 
Fig.5.16: Keypoint estimation in high resolution images. 

3D image 
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Fig. 5.17 shows the proposed method of robust correspondence matching 
(Alsadik et al. 2013b). 
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Fig.5.17: The guided matching methodology by exploiting the 3D model. 

 
The methodology can be summarized as follows: 
 
1- Create synthetic images according to the designed orientation 

parameters as described in section 5.1. Every synthetic image is 
represented by a 2D texture image and 3D information of the pixel 
coordinates. 

2- Develop an image connectivity tree based on the pre-knowledge of the 
object rough model and the exterior orientation of the images. 

3- Implement a SIFT matching on both the synthetic image and its 
corresponding real captured image for every stereopair in the image 
connectivity graph. The two dimensional relation between the SIFT points 
in both equivalent images will be used to transform the 3D coordinates 
(XYZ) from the synthetic image to SIFT points to the real image. 

4- Apply the tie points matching between the real full resolution images in 
every stereopair. In the left image, every scaled SIFT point will be used 
to define a small sub-image w1. In the right image, the same 3D 
coordinates of the SIFT points will be projected back by using the pre-
designed exterior orientation. The pixel coordinates of the projected 
coordinates will be used to define the same size of windows w2. The SIFT 
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matching between every pair of windows is named he as the guided SIFT 
matching. 

5.3 Experiment  
The proposed method was tested on a monument in the old city of Enschede 
in the Netherlands. This cultural heritage object was built in 1912 to 
commemorate the disaster of the city fire in 1863. A low detailed, textured 
model is derived after processing a video image sequence of the monument 
(Fig.5.15c) using open source VSfM, SURE and Meshlab. Then, a camera 
network is designed as a circular domain around the monument point cloud. 
Accordingly, a two strip dense ordered imaging block of 58 cameras is first 
designed (chapter 4) as shown in Fig.5.18. Then, the imaging network is 
filtered according to accuracy demands and the cameras are reduced from 58 
to 30 as illustrated in Fig.5.18 
 

 
(a) 

 
(b) 

Fig. 5.18: The camera network design of a monument. (a) Dense network. (b) Filtered 
network from two views.  

 
The error analysis (chapter 4) shows that the filtered network meets the pre-
defined accuracy of 10mm. The synthetic images are created in the same 
way as described previously in section 5.1 as shown in Fig.5.19a. The real-
captured images are taken as described in section 5.1.4 and the results are 
shown in Fig.5.19b. For verification and sharing, the images are also 
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uploaded into the Photosynth software (Photosynth 2012) and the link of 
Fig.5.20 illustrates the automated successful image orientation. 
 

    
(a)                                                                      (b) 

Fig. 5.19: (a) The synthetic images of the monument. (b) The real captured images. 
 

   
Fig.5.20: The oriented monument images shown in the web service of Photosynth. 

http://photosynth.net/edit.aspx?cid=926d20e6-7712-4596-b251-4a306be0d346&wa=wsignin1.0 
 
To investigate the advantage of our guided matching in the sense of time, 
the images are resized into four different sizes. The VSfM software is used to 
implement GPU SIFT matching of the 30 monument images in both cases of 
the full pairwise and the guided matching. The results are shown in the chart 
in Fig.5.21 and Table 5.1 respectively. Obviously, the time needed to process 
the images for the guided matching is about 50% less than full pairwise 
matching using the same computer. This reduction in processing time is 
proportional to the number of images as will be shown in the case study of 
chapter 7.   

92 

http://photosynth.net/edit.aspx?cid=926d20e6-7712-4596-b251-4a306be0d346&wa=wsignin1.0


Chapter 5 

 
Fig. 5.21. The histogram chart of the processing time for the full pairwise and the 

guided matching. 
 

Table 5.1: The processing time for the full pairwise and the guided matching. 
Processing time [seconds] 

Resolution 
[pixels] Full pairwise Guided 

match 
640 82 48 
1600 134 71 
1920 303 152 
2240 440 209 

 
Moreover, to analyse the efficiency of the proposed method, four overlapped 
images are selected (Fig. 5.22) using three different techniques for matching: 
SIFT, SURF and NCC. The images are selected to have both wide baseline 
and short baseline configuration. The oriented cameras and their effect on 
the errors in the object space is shown in Fig. 5.23. 
 

 
Fig.5.22: Four-image sample set. 
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(a)                                               (b)                                                (c) 

Fig. 5.23: Comparison of error ellipsoids. (a) SIFT matching. (b) SURF matching. (c) 
NCC matching. 

 
Table 5.2 shows a comparison between the three different matching 
operators for the sample data set of Fig. 5.22.  
 

Table 5.2: Comparison between different guided matching operators.  
 Guided matching 

 SIFT SURF NCC 
No. of oriented images 4   4 4 
No. of tie points 256 144 103 
Avg. point marking residuals [pixels] 0.79 0.92 2.07 
Avg. point precisions [m] 0.011  0.013 0.030 

 
All the operators are succeeded to guide the matching even with a wide 
baseline stereo pair with a privilege to SIFT. 
 
Furthermore, 15 images of the same network are tested for the guided 
matching using the SIFT operator and compared to a commercial software 
(Photomodeler 2010). The proposed approach successfully orients the full 
dataset even with a wide baseline camera as shown in the red circle on Fig. 
5.24a while Photomodeler was unable to orient the indicated camera. 
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(a) 

 
(b) 

Fig.5.24: (a) Guided matching results in 15 oriented images. (b) Smart match 
(Photomodeler) results in 14 oriented images. 

 
A comparison is also made between the proposed technique and the 
Photomodeler smart match in terms of: number of oriented images, number 
of tie points, marking residual,  and the point precision as illustrated in Fig. 
5.25. 
 

  
(a) (b) 

 
 

(c) (d) 
Fig. 5.25: (a) No. of oriented images. (b) No. of tie points. (c) The average point 

marking residuals [pixels]. (d) Average point precisions [m]. 
 

The graphs of Fig. 5.24 shows a promising results of the guided matching 
compared to Photomodeler. 

5.4 Summary 
In this chapter, we introduced a concept for guiding the camera operator to 
capture, in reality, the pre-designed optimal images presented in chapter 4. 
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The concept is based on creating synthetic images that visually represent the 
optimal camera orientation. This is motivated by the simplicity of interpreting 
the images to enable, even non-professionals, to accomplish the necessary 
photo take for the 3D modelling. 
 
These synthetic images are created with a low resolution (like 640*480 
pixels) by utilizing the texture of the captured video images that was used 
before for the optimization step. This selected resolution proved to be 
sufficient in the way that it gives enough SIFT matching points and on the 
other hand, it offers a reduced processing time needed when creating these 
images and applying the matching. 
 
However, SIFT matching with synthetic images can result in a significant 
amount of wrong matches, which must be filtered to end with an efficient 
orientation. The method is based on simple statistical testing to remove these 
blunders with respect to a certain threshold (section 5.1.3). 
A strategy is presented to accept or reject the real-captured images by 
validating the accuracy after incorporating the computed orientation of these 
images in the imaging network instead of those of the synthesized images. 
This is accomplished image by image until finishing the image capture for the 
whole designed network (Fig. 5.12). The accuracy validation is done in the 
same way as introduced in chapter 4 by computing the covariance matrix of 
the coordinates (𝑄𝑄𝑠𝑠).  
 
The taken images are oriented by first applying the tie point matching. The 
proposed methodology was to guide the connectivity between the images 
instead of the time consuming full pairwise approach as shown in Fig. 5.21 
which compared the processing time in both approaches. 
  
The presented approach showed that the tie point detection is constrained to 
the object itself without its surroundings or the background (Fig.5.7) because 
the method is based on the derived rough 3D model of the object. This 
restriction limited the search space between the stereo images, avoided the 
mismatching points resulted from the dense texture in the background, and 
reduced the processing time. The approach proved, as shown in the 
experiment, to give better results in terms of marking residuals, number of 
oriented images, and final error (Fig. 5.25). 
 
The advantages of using the multi-window matching procedure are concluded 
in the sense of: 
- The avoidance of mismatching the SIFT correspondences due to the high 

probability of matching the same overlapped subimages.  
- The large number of correspondences that will be computed with respect 

to the selected window size. 
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- The possibility to have a successful correspondence in case of wide 
baseline configurations as will be shown in chapter 7. 

- The reduced consumption of computer memory in multi window matching 
when compared to the required memory of the full resolution images. 
Consequently, this will reduce the processing time for the 
correspondences matching.  

-  
However, some difficulties must be indicated in this developed guided 
imaging method. The first issue is concerned with the synthetic images 
where sometimes they lack the necessary texture. This is due to the 
incompleteness of the developed 3D rough model. Another problem is 
possible when the matching SIFT points are not well distributed around the 
image. This will affect the efficiency of results if applying a camera self-
calibration.  
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Chapter 6 Gap Detection and Final 
Modelling  

The image based techniques of camera planning and the image orientation 
described previously in chapter 4 and chapter 5 ends with a dense point 
cloud of the imaged object. However, the point cloud can still have some 
gaps despite the good camera planning because of different factors like the 
occlusion effects and the lack of texture on some object surfaces. 
 
Generally, gaps in the final 3D image-based representation of objects can be 
decreased but barely avoided. This is due to several reasons that belong to 
the object complexity, object's surroundings and accessibility, sensor 
planning and the possible shortcoming in post-processing. 
 
In the context of gap detection, post-processing techniques are applied based 
on either computer graphics or computer vision techniques. In computer 
graphics, gaps are to be filled graphically based on volumetric or surface 
meshing techniques. In computer vision, reducing the gaps is based on the 
improvement of the state-of-the-art stereo dense image matching. However, 
these processes are sometimes insufficient and can be assisted, as proposed 
in this chapter, by improving the imaging plan to offer better coverage of the 
missing parts of the modelled object. 
 
Practically, this can be done by the automatic detection of the gaps and then 
by the addition of auxiliary image shots to the pre-captured image network. 
This will contribute in filling, as far as possible, the detected gaps.  
 
Hence, this chapter will discuss the gap detection in a point cloud and the 
subsequent image capturing for the final 3D modelling.    

6.1 Gaps possible causes 
Gaps in the final image based 3D model (mainly with buildings) can result 
from different causes during the acquisition. These causes can be classified 
as: 
- Insufficient object coverage by images. 
- Structural and/or textural complexity of the object. 
- Occluding objects between the imaging camera and the object.  
- Poorly textured parts of the object.  
- Existence of real holes or openings in the object. 
These causes are illustrated as follows: 
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6.1.1 The insufficient object coverage by images 
As presented previously in chapter 4, we designed the camera network in a 
way that guarantees full coverage of the study object. However, this design 
is based on a rough model of the object. If parts are missing in this model, 
they will possibly also be missed in the final imaging network and hence 
result in a  gap in the final point cloud. Furthermore, our design is focused on 
taking the images from the street level, which is applicable particularly for 
laymen. This street level imaging is definitely a source of insufficient 
coverage because the upper parts of the objects like buildings or facades will 
be occluded as illustrated in Fig. 6.1. 
 

 
Fig.6.1: Obscured areas from street level view. 

6.1.2 The complexity of the object itself 
In the sense of 3D modelling, objects like buildings or statues are 
representing challenging (complex) objects in most of the cases. For 
sculptures and statues, the non-uniformity represents a complexity. On the 
other hand, building façades with their furniture (doors, windows, 
protrusions, etc.) are also complex to be modelled in a reality-based 
representation (Guidi et al. ; Manferdini and Remondino 2010). These kind of 
complexities is a major source of gaps in the 3D model. We classified these 
causes of gaps as follows (Fig.6.2): 
• Gaps caused by self-occlusions 
• Gaps caused by intrusions and extrusions (protrusions) 
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(a) 

 
(b) 

Fig.6.2: Gaps caused by object complexity a) Gaps due to self-occlusions. (b) Gaps due 
to protrusions. 

 

6.1.3 The occluding objects between the camera and the 
object 

The occluding objects between the camera and the study object represent a 
very common, difficult to avoid source for gaps in the final 3D models. 
Objects like vehicles, trees, fences, etc. are always preventing the free-
occlusion 3D models. Many researchers have tried to solve this problem (Shin 
et al. 2008; Lee et al. 2010; Hammoudi et al. 2012). However, it's still a very 
challenging topic in image processing, photogrammetry and computer vision.  
The created rough model in the pre-planning step (chapter 4) will certainly 
suffer from this occlusion effect and consequently affect the designed camera 
network. Fig. 6.3 illustrates how the gaps can be caused by occlusions. 
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Fig. 6.3: Gaps due to occlusions. 

6.1.4 The poorly textured parts of the object 
Textureless objects like window glass is a common source of gaps when 
modelling building facades (Fig. 6.4). In image based techniques windows 
can be partly modelled due to shadows or curtains, but mostly they are 
incompletely modelled. There are also other parts which might cause 
problems, i.e. homogeneously painted façades. 
 

 
Fig. 6.4: Gaps due to textureless objects. 

6.1.5 The existence of real holes (openings) in the object 
In many building facades, a real opening can be found as a part of the 
architectural design of the building. Open gates and corridors are also 
common within facades. This is naturally represented as a gap in the final 
model as illustrated in Fig. 6.5. 
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Fig. 6.5: Gaps due to openings. 

 
Other minor sources for gaps can be: the unfavorable radiometric 
characteristics of the images due to illumination conditions and camera 
settings. Moreover, gaps can also be resulted from the deficiency or 
imperfection in the dense matching approach (Huq et al. 2013).  
 
The following examples are prepared to illustrate the aforementioned causes 
of gaps in the final image based model. All the tests are implemented with a 
Canon 500D SLR camera with 18mm focal length by using state - of -the -art 
Agisoft software  (Photoscan 2011).  
 
Example 1 
High resolution images are taken for a building façade from a street view 
where a car is parked beside the building as shown in Fig. 6.6. The four 
images are oriented automatically and the final textured point cloud is shown 
as well.   

 
Fig. 6.6: The effect of occlusions on the completeness of the final 3d point cloud. 
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Example 2 
This example applied with 17 images taken to a building which has a more 
complex architecture as shown in Fig. 6.7. The resulted 3D model contains 
few gaps due to the textureless window glass and the openings of corridors. 
The gaps near the roofs are also expected because of the street level view 
and self occlusion effect.    
 

 

 

 
Fig. 6.7: The effect of textureless parts, openings and self occlusion on the 

completeness of the final 3D point cloud. 
 
Example 3 
To illustrate the gaps resulted from protrusions, we selected five images of a 
façade with columns shown in Fig. 6.8. The resulted 3D model contains gaps 
along the column sides due to the effect of protrusions and image viewing 
directions.  
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Fig.6.8: The effect of protrusions on the completeness of the final 3d point cloud.  

 
In this thesis chapter, we are mainly focusing on the detection and recovery 
of the point cloud gaps resulted from the insufficient camera planning. The 
avoidance and treatment of gaps resulted from unavoidable occlusions like 
building roofs, and poor texture areas will not be addressed here.   

6.2 Gaps detection techniques 
As stated previously, two methods of gap detection are proposed in this 
chapter. The first method which is computationally less expensive is based on 
a 2D space representation and processing, while the second method is based 
on the 3D voxelization of the object space. The voxelization method is 
computationally expensive, but more effective, especially if real openings 
exist in the point cloud.   

6.2.1 2D-based processing 
Possible causes for gaps in the image-based point clouds are discussed 
earlier in section 6.1 and the question is how to detect these gaps with an 

Gap due to extrusion  
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automated, simple and accurate approach. This step will benefit from the 
previous steps of camera planning and image orientation of chapter 5 where 
each image in the network is accurately oriented. 
 
On the other hand, the proposed technique is not counting on any created 
surface mesh. This should be an advantage in the sense of avoiding 
expensive computations and possible errors or insufficiency in the surface 
meshing. Fig. 6.9 shows two examples of triangulated meshes where the 
mesh failed to model the real openings in Fig. 6.9a or the occluded gap of the 
columns in Fig. 6.9b. Therefore, the technique might be inefficient because it 
is based on detecting elongated mesh triangle sides (Impoco et al. 2004) 
which is not possible to be modelled in some cases as shown. 
 

  
(a)                                            (b) 

Fig. 6.9: Triangulated surface mesh for gap detection. (a) Building with openings. (b) 
Facade with occluded gaps. 

 
Therefore, we propose the 2D based gap detection, which is summarized as 
follows: 
 
1. The projection of the point cloud back to the source images. This is 

applicable since the image orientations beside the point cloud are well 
computed in the step of image orientation.  

 
2. The projected points are to be represented as a raster format. For 

simplicity, the images are created in a binary format (BW) as shown in 
Fig. 6.10b.  

 
3. Morphological operation is applied by using the image morphology 

closing. Image dilation is first used to clear the null value (black) of pixels 
within the point cloud outline and to replace them with filled pixels 
(white). The image morphology closing is preferably applied with a ‘line’ 
structural element (SE). A line SE is more efficient to preserve the outline 
of the objects like buildings as shown in Fig.6.10d. The size of the SE is 
critical to have accurate detection and it is based on the density of the 
point cloud and the gap size. 
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For our tests, the raster image size is set to 480×320 pixels and the 
line SE to 30 pixels. The improper selection of SE size is shown in 
Fig.6.10c where the point cloud boundaries in the upper part are 
extended wrongly to image boundaries. However, after the closing 
operation, the image boundaries are filled with a 10 pixel strip of null 
values to ascertain accurate detection.  

 

       
(a)                                     (b)  

       
(c)                                             (d)  

Fig. 6.10: Image morphology on the raster image of the projected point cloud. (a) 
Original image. (b) BW image of the PC. (c) Image closing with disk SE. (d) Image 

closing with line SE. 
 

4. Accordingly, the original BW image is subtracted from the dilated image 
to detect the possible gaps inside the object outline. This subtraction is 
important to isolate the gaps from the image background. Due to the 
varying density in the point cloud, distinct pixels might be assigned as 
gaps as well.  

 
5. To avoid the gaps resulted from the subtraction in the previous step, a 

smoothing image filter (averaging filter) is applied to the image. The filter 
size as the SE size is proportional to the image resolution. This is because 
whenever the resolution increased, the density (proximity) of the point 
cloud in the raster image increased which needs a larger filter size. 
However, for our tests, a filter size of 7×7 pixels is used.  

 
Fig.6.11 illustrates the methodology workflow. It must be mentioned that this 
technique can be efficient when the point cloud is dense. Otherwise sparsity 
can affect the results. Moreover, this method is expected to be insensitive to 
small size gaps. The methodology is to be applied for every source image and 
then the final gaps are defined in the 3D space by exploiting the 
predetermined 3D point cloud form the previous steps (chapter 5). 
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Fig.6.11: Methodology of 2D-based gap detection. 

 
The same dataset of Fig.6.8 of a facade point cloud produced from five 
images will be processed for the gap detection as illustrated in Fig.6.12.  
Fig.6.12b shows six successive steps for processing the point cloud of the 
façade to determine the gaps. Stating from the raster image of the point 
cloud, a morphological closing is applied followed by subtraction. Then a 
smoothing filter is used and followed finally by filtering to reach the final 
detected gap. 
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(a) 

 
(b) 

 

 
(c) 

Fig.6.12: The 2D-based gap detection experiment. (a) Projecting the point cloud to the 
images. (b) Gap detection technique. (c) The 3d projected gap points. 
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Another experiment of a building façade covered by 14 images is shown in 
Fig.6.13. The dense point cloud is created by using the Agisoft software. A 
car parking near the building caused a gap in one of the stair sides.   
 

 

 

 
Fig.6.13: Façade dense point cloud. 

 
An image view is selected and processed for the 2D gap detection as shown 
in Fig.6.14a with a structural element size of 30 pixels.  

 
Fig. 6.14: The gap detection in a building stairs. 

 
The discussed 2D-based gap detection technique has the disadvantage of 
missing the 3D depth perception in some cases when openings are existing. 
This is because it is based on projecting the point cloud back to the image 
planes. Furthermore, the edges of objects like facades are sometimes, 
mistakenly, considered as gaps due to the morphological dilation or the 
improper selection of the structure element (SE) shape and size. Therefore, 
the second proposed technique for gap detection is based on the 3D space 
representation.  
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6.2.2 Gap detection by voxelization 
The detection of gaps in 3D space can be accomplished either by using a 
volumetric representation with voxels or with triangulated surface meshing. 
Volumetric space representation has the advantage of avoiding the 
intermediate step of triangulation which might be a source of erroneous 
detection. 
 
Hence, the following 3D based methodology of Fig.6.15 is developed for the 
detection of the gaps in the image based point cloud. 
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Fig. 6.15: The workflow of the 3D based gap detection. 
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For more details, the steps of gap detection are explained as follows: 
 
a) Voxelization 
Construct the voxels in 3D space that span the space of the point cloud. Each 
voxel will be labelled either as empty or occupied based on the point cloud as 
shown in Fig.6.16. 

 

Fig.6.16: The 3D voxelization of point cloud with 20 cm voxel side. (a) Point cloud. 
(b) Occupied voxels. (c) Empty voxels. (d) Combined visualization of the empty 

and occupied voxels. 
 
b) Empty Voxel refinement 
Initial filtering of the insignificant or blundered empty voxels is to be done by 
keeping the nearest empty voxels to the occupied voxels. The refinement is 
done by using the occupied voxels to glue the neighbouring empty voxels and 
discard the others. The neighbouring empty voxels are found by computing 
the ‘nearest neighbour’ with a 3×3×3 buffer filter (Fig.6.17). This is followed 
by removing the distant empty voxels which represent the marginal or 
bordering voxels away from the occupied voxels of the point cloud.  
 

    
Fig.6.17: The initial filtering of voxels. (a) Before refinement (b) After refinement.    

 
c) Visibility analysis 
A second step of voxel labelling and filtering is based on the visibility analysis 
between the viewpoints and the voxelized point cloud. This analysis can be 
prepared by using line-voxel intersection or line tracing method as discussed 
in chapter 2. Three types of labeling to the empty voxels might be found as 

     (a)     (b) (d) (c) 

empty 

occupied 
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illustrated in Fig.6.18 and Fig.6.19: fully visible, partially occluded, and fully 
occluded voxels.  
 
Based on the assumption of a sufficient camera network, fully visible and 
fully occluded empty voxels will be neglected. For partly occluded voxels, 
more investigation is required to look for potential gaps. Neglecting fully 
visible voxels is based on the fact that empty voxel cannot occlude occupied 
voxels (Fig.6.18a), and thus must actually be empty. Furthermore, real 
openings like open doors can also be modelled with fully visible empty voxels 
and will be neglected (Fig. 6.18b).  
Furthermore, fully hidden occluded voxels like empty space behind a wall are 
also neglected as illustrated in Fig. 6.18c. 
 

               
           (a)         (b) (c) 

 
Fig.6.18: Labelling empty voxels by visibility analysis. (a) Fully occluded. (b) Real 

opening. (c) Fully visible empty voxel.   
 

On the other hand, partly occluded empty voxels can be considered as gaps 
because either they are not covered well by the images (less than three 
images) or because they are occluded by another object (Fig.6.19).   

       
(a)   (b) 

Fig.6.19: Labelling partly occluded empty voxels by visibility analysis.      (a) Obstacle-
occlusion effect. (b) Insufficient covering cameras or self-occlusion. 

Empty 
 voxel 
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The labelling the empty voxels  as fully occluded, fully visible or partly 
occluded can be expressed in the following pseudo code in Table 6.1. 
 

Table 6.1: Pseudo code for the visibility analysis of empty voxels. 

For every empty voxel Aj 
For every image i 
origin= [Txi, Tyi, Tzi], 
direction= Aj-origin, 
Compute distance between the empty voxel j and camera i: dij  
Compute rotation matrix M, 
Compute image coordinates xj,yj by collinearity,   
%%Check if the voxel is within the camera view 
if(x <length/2 &&  x >-length/2 &&  y <width/2 &&  y > -width/2); 
%% then check if it is occluded or not by the other occupied voxels 
for every occupied voxel Bk 
define the two vertices of a voxel k (vmin,vmax),   
flag = rayBoxIntersection(origin, direction, vmin, vmax) 
Compute distance between the occ. Voxel k and camera i: dik  
if flag==0 there is no intersection   
F(k,1)= 0   
else if flag==1 && dij<dik then the occ. Voxel k is behind the empty voxel j 
F(k,1)=0 ; %% and the empty voxel is visible.   
else if flag==1 && dik<dij then the occ. Voxel k is in front of the empty 
voxel j and closer to camera i,   
F(k, 1) =-1; %%the empty voxel is invisible   
%%%      
Repeat for every occ. voxel 
Check if sum(F)=0, then the empty voxel j is visible; 
Check if sum(F)~=0, then the empty voxel j is invisible; 
Repeat for every camera i 
Repeat for every empty voxel j 
If voxel j is visible >2 cameras 
Vindex=1 
else if voxel j is hidden in all cameras  
Vindex=-1 
Else 
Vindex=0 %% partly occluded 
End 

 
d) Neighbourhood index 
The visibility analysis and labelling of empty voxels is not always sufficient to 
reliably find out the potential gaps. This is because of the possible inadequate 
camera placement and the blunders or noise in the point cloud. Moreover, 
openings modelled with empty voxels might, sometimes, not be visible from 
every imaging camera and will be labelled as partly occluded. 
 
Therefore, other measures are to be added to support the visibility analysis. 
A neighbourhood index (NI) might be efficient to strengthen the detection of 
gap voxels. This is actually similar to a majority filter (3x3x3 neighbourhood), 
but also uses the actual direction of neighbours. Fig.6.20 illustrates the 
computation of the neighbourhood index of a voxel. Three types of proximity 
distances (𝑑𝑑1,𝑑𝑑2,𝑑𝑑3) are to be computed to define the search space. More 
neighbouring occupied voxels indicate a high chance of being an occluded 
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empty voxel and vice versa. NI is computed as (number of occupied voxels/ 
total neighbouring voxels) and a threshold of (>50%) is considered to 
indicate occluded empty voxel. On the other hand, the remaining voxels will 
be considered as insignificant gaps. These gaps might be blunders or caused 
by the textureless parts and real openings. 

 
(a) 

 
(b) 

Fig.6.20: (a) Proximity measure. (b) 3×3 neighbouring voxels. 
 

Finally, other measures like the altitude can be used to refine the detection. 
Altitude index is useful when the imaging is done with a street level view 
since the upper parts of the object are self-occluded. Hence, the empty 
voxels near the upper parts of objects will be neglected because of the 
visibility limitation.  
 
Moreover, converting the images into binary can be used to assist the 
detection of real openings. These openings usually have a dark texture or low 
intensity values near zero and this is might be useful to be added as an extra 
information as will be shown in the following experiments. The openings 
which are represented as black areas will probably need to be verified either 
as real dark spots or blunders to be removed. This detection is applied by 
successive image morphological closing. Black painted doors as an example 
will be considered as potential openings according to this methodology. 
However, these kind of objects is normally represented in the point cloud and 
later as occupied voxels and will not affect the detection. 
 
After the gap detection, auxiliary images will be captured to recover the gaps 
in the point cloud and to finally have a complete 3D model.   
Two experiments will be presented to verify the proposed 3D based gap 
detection by voxelization as follows: 
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Façade Experiment 
The same experiment of Fig. 6.13 is tested with the algorithm of 3D gap 
voxelization which is applied based on a 30 cm user defined voxel size as 
shown in Fig. 6.21. Fig.6.21a shows the occupied voxels while Fig.6.21b 
shows the visibility analysis of the empty voxels. Fig.6.21c illustrates the 
partly occluded gap voxels and Fig.6.21d shows the final detected gaps after 
the neighbourhood filtering.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.6.21: The output results of gap detection. (a) Occupied voxels. (b) Empty voxels 
labelled according to visibility. (c) Empty voxels After visibility test. (d) Final filtered 

empty occluded voxels. 
 
The detection was successful to find out the gaps at the right side of the 
stairs as shown in Fig.6.21d.  
 

Fully occluded 
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Partly occluded 

Potential gap 
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Statue experiment  
To evaluate the method on free form objects like statues, the 3D gap 
detection method is applied. 64 images are taken around a state as shown in 
Fig.6.22. The created dense point cloud is lacking some parts near the upper 
shoulder and near the rectangular base. 
 

 

 

 

 
Fig. 6.22: Statue dense point cloud and gaps 

 
The 3d voxelization gap detection is applied and the results are illustrated in 
Fig.6.23 based on user defined 15 cm voxel size. The developed method is 
successful to detect the empty voxels near the base regions and near the top 
shoulder of the statue, which is not well visible from the camera operator 
ground level (Fig. 6.24). 
 

 
 (a)   (b)   (c) 
Fig. 6.23: Gap detection in a statue point cloud. (a) Occupied voxels. (b) Empty voxels 
and (c) Empty voxels after visibility test 

Fully occluded 

Fully visible 
 Partly occluded 
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Fig.6.24: Gap detection in a statue point cloud  
 

The detected voxel gaps will be avoided by taking auxiliary images for these 
gap areas as will be shown in section 6.3.   
 
Facade with real opening experiments 
 
The third test is applied on a façade with a real opening of a gate with a 
corridor as shown in Fig.6.25. Four images are selected to create a dense 
point cloud of the façade. The voxelization is applied similar to the first test 
and based on 30 cm voxel size. 

Potential gap 
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(a) (b) (c) (d) 

  

 
(e) (f)  

 
(g) 

Fig. 6.25: Gap detection of a façade with opening. (a) Point cloud. (b) Occupied voxels. 
(c) Empty voxels. (d) Empty and occupied voxels. (e) Visibility labelling. (f) Partly 

occluded voxels. (g) Empty voxels after neighbourhood analysis and filtering. 
 
Fig.6.25f shows the final detected gaps in red which are located in the 
missing part of a window in the point cloud. It must be noted that few voxels 
are detected inside the real opening after the visibility analysis. These voxels 
are detected because of the existence of some points behind the gate. 
However, these voxels  are filtered out by the neighbourhood index. 
A second test on a different façade of a garage is also implemented where six 
overlapped images are taken as shown in Fig.6.26a. 
 

Fully occluded 

Fully visible 
 

Partly occluded 
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The point cloud shows the real opening of the garage beside some occluded 
gaps above the gates. It is expected to detect these occluded gaps while 
neglecting the empty space of the real openings of the garage. 
 

     

 
(a) 

 
 (b) (c) (d) 

 
(e)                                        (f)  

   
   (g) 
After the visibility test of Fig.6.26f, some faulty detected empty voxels inside 
the openings are found. These wrongly detected voxels are partly occluded 
because they are located deeper from the façade plane because of the fill 

Fully occluded 

Fully visible 
 

Partly occluded 

Fig. 6.26. Facade with real 
opening and visibility analysis 

result. (a) Point cloud. (b) 
Occupied voxels. (c) Empty 

voxels. (d) Empty and 
occupied voxels. (e) Visibility 
labelling. (f) Partly occluded 
voxels. (g) Final detected 

gaps. 
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approach and some noise in the point cloud. The use of neighbourhood index 
will remove these blundered voxels as shown in Fig. 6.26g.   

6.3 The auxiliary image capture and orientation 
After the detection of gaps in a point cloud, the planning on taking auxiliary 
images is followed as shown earlier in the methodology of Fig. 6.17. The 
concept of completing the detected gaps can be applied by projecting these 
detected gaps back to the source images and highlight their spots for 
subsequent guidance. Another idea that can fit the nonprofessional needs is 
by displaying the 3D model of the object with the gap spots or voxels 
highlighted on it. The user can easily trace and define these spots on the  
object and capture the auxiliary images without more guidance as before.  
 
Three auxiliary images, at least, should be taken for every detected gap and 
the orientation step is applied again for the final step of dense point cloud 
and 3D modelling. 
 
A more advanced procedure is by re-applying the camera planning described 
in chapter 4. The guidance with synthetic images can be applied based on the 
parts surrounding the detected gaps. 
 
The same approach of guiding the connectivity between the images (chapter 
5) will be implemented again to reduce the computations and to avoid the 
matching failure problem when object repetitive pattern exist.  
 
The connectivity tree is simply computed between the previously oriented 
images involved with the detected gap area and the new auxiliary images. 
This is based on the assumption of a reasonable overlap between both sets of 
images. Fig. 6.27 shows a diagram of the imaging update for image 
connectivity. 
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Fig.6.27: Image connectivity with auxiliary images 

 
On the other hand, the guidance of SIFT matching will not be applicable as 
applied before (chapter 5) because of the missing 3D information in the 
detected gap areas.  
 
The 3D illustration of Fig. 6.21 of the façade experiments will be useful to 
guide the camera operator to capture a minimum of three auxiliary images in 
the gap area. This is more convenient to be used with the current technology 
like with tablets or smart phone devices. Fig.6.28a shows the dense point 
cloud before gap detection and recovery. Fig.6.28b illustrates the dense point 
cloud (by Agisoft) after taking five auxiliary images that will be stitched with 
the pre-oriented images to complete the missing part of the stairs. Fig. 6.29 
shows the dense point cloud of the statue base and the completeness after 
the addition of eight auxiliary images. 
 
This proposed system can test the completeness of the point cloud and can 
check the gaps occurrence iteratively. It must be noted that the pose of the 
captured images will be more convenient at this stage to be estimated by the 
camera operator intuition without additional guidance. However, following 
some guidelines on image capturing or having some experience in 
photogrammetry is better to avoid the repetition.  
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(a)                                          (b) 

 
(c) 

Fig. 6.28: The dense point cloud of façade. (a) Detected gap voxels. (b) Dense point 
cloud before detection (b) dense point cloud after the auxiliary image capture. 

  

detectedl gap 
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(a)                                                          (b) 

 
 

(c)                                                                         (d) 
Fig. 6.29: The dense point cloud of the statue base.  (a) The detected gap voxels. (b) 
The dense point cloud before recovery. (c) The dense point cloud after the auxiliary 

image capture shown in (d). 

6.4 Summary  
In this chapter, the detection of gaps in image-based point clouds were 
presented as well as a procedure to capture auxiliary images for the final 3D 
modelling. Two techniques were proposed, the first technique in section 6.2.1 
was based on a 2D projection of the point cloud back into the images. Then, 
image processing techniques were used for detection. This technique was not 
sufficient to detect all the gap types in 3D space. The second method which 
represents the core method as discussed in section 6.2.2 was based on 3D 
space voxelization where the voxels are classified either as empty or 
occupied. Visibility analysis by testing the ray-voxel intersection were crucial 
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to discover the potential gap voxels. Different tests were presented for a 
façade in Fig. 6.21 and a statue in Fig.6.23. Point cloud with openings are 
also tested as shown in Fig.6.25 and Fig. 6.26. The voxel based technique for 
gap detection was not prepared to detect gaps in the poor textured areas.   
After the gap detection, a simple method was presented to capture auxiliary 
images for a final 3D modelling of gaps and missing parts. 
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Chapter 7 Case Study  
This chapter describes and analyses a complete experiment in using the 
proposed methodology of this thesis in the image based modelling of a 
cultural heritage church. The church represents one of the oldest churches 
(approx. 1100AD) in the city centre of Enschede – Netherlands. 
 
The approach used in this experiment was applied in a sequence of steps 
starting with a camera network design (chapter 4) that satisfied the 
necessary object coverage to produce a complete 3D model. This was 
followed by field guidance of the camera operator to capture the planned 
images in a flexible and simple way. The captured images were oriented 
automatically by using the bundle adjustment computations. The image 
orientation was based on finding sufficient image correspondences through 
the proposed guided matching techniques (chapter 5). The benefits of the 
guided image point correspondences compared to the full pairwise method 
were presented in terms of time consumption and accuracy of point 
localization. Image orientation was computed using the open source software 
Apero and the 3D point cloud of the church was created by using the 
techniques of dense matching with Micmac (Pierrot-Deseilligny 2012). Finally, 
gap detection was applied to the church point cloud and the final auxiliary 
images were captured. The processing was continued for the completion of 
the point cloud (chapter 6) and final 3D modelling.  
 
The images were taken using a calibrated Canon EOS 500D with a resolution 
of 15 mega pixels (4752×3168 pixels). The illumination effect was reduced 
by capturing the images on a cloudy day with a 18 mm focal length. 
Details of the implementation sequence of the proposed 3D modelling are 
presented in the following subsections.  

7.1 Referencing data 
To verify the quality of the proposed method for 3D modelling, a benchmark 
was necessary to have an external validation for the accuracy and reliability 
of the produced models. Therefore, terrestrial laser scanning (TLS) was 
conducted around the church building using a “Trimble CX scanner”  where 
the manufacturer single point positioning accuracy is 4.5 mm per 30 m 
distance.  
 
The resulting point cloud consists of more than 23 million points. It has an 
average point spacing of 5mm and is shown in Fig. 7.1. 
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Fig.7.1: The reference point cloud by using the terrestrial laser scanning.  

 
Six control points GCP with four checkpoints were also fixed on the church 
facades in a local coordinate system (Fig.7.2a). This is to ensure the correct 
referencing and scaling of the produced image based point cloud. The point 
heights were between 2-3 meters.  
The control target point was designed as a 15 cm squared shape coloured 
with black and white (Fig.7.2b). 
 

 
(a) 

 
 
 

 
 

(b) 
Fig.7.2: (a) The GCPs distribution. (b) The GCP target design.  

7.2 Camera network design  
The camera network design was started by using the empirical formula of 
equation (4.6). This was necessary to estimate the impact of the design on 
the final 3D model. 
 
According to the demands of a highly detailed modelling and the accessible 
space around the church, the GSD was designed as 3-5 mm with a camera 
focal length of 18 mm. The expected accuracy in the object space was around 
10 mm as shown in Fig.7.3. This is based on an assumed standard error of 
half a pixel in the measured SIFT points according to Barazzetti et al. (2010).  
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Fig.7.3: Accuracy estimation for the imaging design.  

 
All computations are based on a rough point cloud derived from a video 
image stream (640×480 pixels) around the church using VSfM as shown in 
Fig. 7.4.  
 

 
Fig.7.4: The rough point cloud of the church using VSfM. 

 
The acquired rough point cloud was segmented into facades as shown in Fig. 
7.5 to build the camera network. Some parts seem over-segmented or 
under-segmented and this will result in planning either more than necessary 
or less dense camera blocks respectively. However, the designed large 
number of cameras will guarantee the full coverage in both cases.    
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Fig.7.5: The segmentation of the church rough point cloud. 

 
The designed network was based on the estimated accuracy to simulate a 
dense network (311 cameras) as shown in Fig.7.6a. The dense camera 
network was filtered according to the accuracy requirements and resulted in 
the imaging configuration of Fig. 7.6b, which consisted of 118 cameras. The 
optimization algorithm was applied to find the final imaging configuration as 
shown in Fig. 7.6c. 
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Fig.7.6: The camera planning and optimization of the church. (a) Dense network. (b) 

Filtered network. (c) Optimal network. 

7.3 Guiding the image capture 
Synthetic images were created as discussed in chapter 5 for every designed 
image as illustrated in the sample of Fig. 7.7a. These synthetic images were 
used as a guide to capture the real equivalent images (Fig. 7.7b). 
 
Every new captured image was evaluated and the rejected images were 
recaptured. The procedure was continued until the complete set of images 
was taken. Fig. 7.7a,b illustrate a sample of both real and synthetic images 
matching. A space resection to compute the orientation of the real image for 
the validation is illustrated in Fig. 7.7c,d.  

(a) 

(b) (c) 
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Fig.7.7: Sample of synthetic and real captured images. (a) Synthetic images. (b) Real 

images. (c) SIFT matching between the synthetic and captured image. (d) Space 
resection. 

 
The complete set of the captured images was 118 images (Fig.7.8) which 
shows an acceptable (≥3 cameras) amount of coverage.  
 

 
Fig.7.8: Captured data set for the 3D modelling of the church.   

7.4 Extraction of image correspondences 
The designed camera orientation and the 3D information about the church 
object are necessary to compute the image connectivity as mentioned in 
chapter 5. The computed connectivity in the case of full pairwise matching as 
well as the case of the guided matching is shown in Fig.7.9. This figure shows 
the computation reduction offered by the guided matching compared to the 
full pairwise where all the possible matches between the stereo pairs were 
tested. 
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(a)                                                    (b) 

Fig.7.9: Comparison between full pairwise and guided connectivity graphs. (a) 
Connectivity graph of the Pre-designed network (1319 matches). (b) Full pairwise 

connectivity graph (6903 matches). 
 
The graph in Fig.7.10 illustrates the time consumption in both cases of full 
pairwise and guided matching with three different image resolutions using 
the same computer. This graph shows that the time needed for the matching 
of the pre-designed camera network was about 70% less than the full 
pairwise matching. 

 
Fig.7.10: The time consumed in full pairwise and guided matching for the church 

dataset. 
 

Moreover, the guided approach was advantageous to avoid possible 
mismatching as shown in Fig.7.11. This often happened in the church facades 
with its repetitive texture pattern (Fig. 7.11a). The symmetric connectivity 
matrix shown in Fig. 7.11b and Fig. 7.11c is another graphical representation 
of the image connectivity. These two figures show two cases of correct 
matching (green colour) and mismatching (red colour). 
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(a) 

 (b)                                                       (c) 
Fig.7.11: Mismatching case of a repetitive pattern of the church left and right facades. 
(a) SIFT mismatching in full pairwise. (b) Guided approach. (c) Full pairwise approach. 

 
Further benefits were attained from the guided matching besides the time 
consumption and the mismatching avoidance. These benefits were mainly in 
the higher correctness within the matching of the image correspondences and 
the high number of the detected matching points. 
 
A window size of 150 pixels was applied to compute the correspondences 
between the short baseline images. For wide baseline images as in Fig. 
7.12a, a window size of 250 pixels was applied and resulted in 14882 point 
correspondences. This is a large number of homologous points compared to 
the points acquired by other software. Fig. 7.12b shows 722 matching points 
result with the same stereopair using SIFT with open source VSfM. Fig. 7.12c 
shows 2543 matching points with the same stereopair using Agisoft 
photoscan software. 
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(a) 

 
(b) 

  
(c) 

Fig. 7.12: (a) Image correspondences using our guided matching. (b) Image 
correspondences using VSFM software. (c) Image correspondences using Agisoft 

photoscan software. 

7.5 Image orientation   
The number of the image correspondences computed using the guided 
matching in the experiment was high and therefore reduced to less than half 
(≈200000 points) to have a reasonable processing data and time. The open 
source software APERO was used for the image orientation which is a part of 
the full package of MICMAC (Pierrot-Deseilligny 2012). APERO was fed with 
the image correspondences according to the guided approach described in 
chapter 5. A relative orientation was first applied and then followed by the 
absolute orientation using 6 GCP and keeping the other four as checkpoints 
(Fig. 7.13). 
 
The GCP target points were marked manually on the corresponding images 
which was probably a source of pointing error. However, careful zooming and 
marking was applied on the images to decrease the chance of large errors. 
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After feeding the data to APERO software, the bundle adjustment was applied 
to obtain the final oriented camera network and the sparse point cloud as 
shown in Fig.7.13. The unit standard deviation of the adjustment was 0.82 
pixels which is higher than the assumed standard deviation of 0.5 pixels in 
the designing step. One reason could be the insufficient calibration 
parameters of the camera. Therefore, an assumed measurement precision of 
1 pixel in the image coordinates seems more reasonable. The predicted 
precision in the object space equals 2.5 mm according to the mean image 
scale. This amount met the designing criteria and the selected GSD in section 
7.1. 

 
Fig.7.13: The oriented camera network by guided image correspondences using 

APERO. 
 

To investigate the predicted accuracy, the root mean square error RMSE was 
computed for the GCPs and checkpoints as illustrated in Table 7.1.  
 

Table 7.1: RMSE of the GCPs and checkpoints.   
Point  𝐷𝐷𝑥𝑥 [m] 𝐷𝐷𝑦𝑦 [m] 𝐷𝐷𝑧𝑧 [m] Point error 

GCP 12 0.001 -0.007 -0.005 0.009 
GCP 20 0.001 -0.006 0.002 -0.006 
GCP 24 0.003 -0.001 -0.000 0.003 
GCP 31 -0.003 0.007 0.005 0.009 
GCP 40 0.005 -0.009 0.009 0.014 
GCP 53 0.001 0.004 0.000 0.004 
 0.004 0.006 0.004 RMSE=0.008 
     
checkP16 -0.011 -0.005 -0.008 0.015 
checkP25 0.006 0.001 0.003 0.007 
checkP51 0.002 -0.001 -0.002 0.004 
checkP66 0.023 -0.001 0.011 0.026 
 0.013 0.003 0.008 RMSE=0.016 

 
The final 3D dense point cloud was generated by using the open source 
software MICMAC as shown in Fig. 7.14.  
However, MICMAC cannot automatically produce the total point cloud directly 
after image orientation. Therefore, sub clouds were created first based on the 
image connectivity and then the total point cloud was prepared by manual 
fusing of the sub point clouds. 
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This manual fusing is the reason behind the difference of texture above the 
church entrance. Another reason is the illumination change during the 
capture of images of that part. The density of points was very high and 
sampled to finally have about 40 million points. 
 

 

 
Fig.7.14: The dense textured point cloud of the church using MICMAC. 

 
To validate the acquired point cloud, the distances between sub point clouds 
and their TLS reference point cloud were computed using the CloudCompare 
software. This comparison is based on using the Iterative Closest Point (ICP) 
algorithm to register the image based point cloud to the reference point cloud 
from TLS. Then, each point in the image based cloud is assigned to its 
nearest neighbour in the reference cloud and the distance metric is 
computed.  
 
Two sub clouds were selected for the validation. The first point cloud of a 
sundial (Fig.7.15) shows a mean shift distance of 7mm with a standard 
deviation of 5 mm between the image based cloud (296284 points) and the 
TLS point cloud (559458 points).  
 
The second test (Fig.7.16) of a church window indicates a similar accuracy of 
(8±5) mm between the image based cloud (1987529 points) and the TLS 
cloud (3218109 points). These two tests indicate a highly accurate point 
cloud of the church building when compared to the reference TLS point cloud. 
The dominant blue colour in Fig. 7.15c and Fig. 7.16c visually indicates that 
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the image based point cloud are coinciding with the TLS point cloud. The 
amount of shift in both test agrees with the RMSE in the GCPs and the 
designed accuracy of the project of 10 mm in section 7.2.      
 

                    
(a) (b)                                              

     
  (c)                                                

Fig. 7.15: The first test for point cloud validation. (a) Image-based point cloud. (b) TLS 
point cloud.  (c) Distance between the point clouds. 
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(a)                                         (b) 

 
(c) 

Fig. 7.16: The second test for point cloud validation. (a) Image-based point cloud. (b) 
TLS point cloud.  (c) Distance between the point clouds. 

 
To evaluate the point cloud created in the upper parts of the church, the 
following sub-cloud was selected as shown in Fig. 7.17.  
 
The computed distance between the image based cloud (104220 points) and 
the TLS cloud (265856 points) is 3±2 cm. This result indicates a poor 
accuracy of the created point cloud at the church tower when compared to 
the reference TLS point cloud. Moreover, the density of the points in the 
upper parts of the building is less than the density in the lower parts. This is 
also clear from the mentioned number of points in the three tests. This is 
expected because the images were captured at the street level and then the 
created point cloud affected by the weak angle intersection geometry and the 
reduced resolution at these upper parts.  

139 



Case study 

     
Fig. 7.17: The validation of the upper part of the church point cloud.  

7.6 Gap detection and final modelling 
The church architectural design as shown in Fig. 7.14 was characterized by 
the extruded columns on the facades of the church. These extruded columns 
represented a challenge for the 3D modelling because of the difficulty to 
accommodate them during the camera planning. This insufficiency was 
related to the use of a rough point cloud during the design stage. 
 
Therefore, the few missing gaps in the dense point cloud especially near the 
column sides were first detected by the voxelization procedure (chapter 6) 
and then auxiliary images were taken. The gap detection was applied per 
facade to reduce the computation time. 
 
Figure 7.18a illustrates the point cloud of one façade viewed by 13 images 
and was tested for gaps. Obviously, the façade point cloud included only gaps 
caused by occlusions and insufficient camera network coverage. The point 
cloud was voxelized and then the voxels were labelled according to the 
visibility as either empty voxels in red, partly occluded in yellow or occupied 
in green as shown in Figure 7.18b respectively. The filtering strategy was 
based on the visibility, neighbourhood index and altitude resulted in the final 
empty voxels which represented the occluded gaps in the point cloud (Fig. 
7.18c). 
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(a) 

 

  
   (b) 

 
(c) 

 
Figure 7.18: Gap detection with voxels. (a) The dense point cloud and occupied voxels. 
(b) The empty voxels are coloured according to visibility test. (c) Filtered voxels after 
visibility test (yellow) and the final detected gaps (red). 
 
The total detected gaps represented as voxels were projected to the dense 
point cloud of the church as shown in Fig.7.19. It must be noted that the 
smallest part in the front façade in the second view of Fig. 7.19 is not 
represented as gap voxels. The gaps were neglected because this part was 
occluded by a tree which cannot be avoided.      
 

Fully occluded 

Fully visible voxels 

Partly occluded 
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Fig. 7.19: The church point cloud with potential detected gaps represented as red 

voxels. 
 
After the gap detection, auxiliary images were planned to be taken in a 
similar procedure described in chapter 6. The connectivity graph was 
prepared between the images involved with every detected gap location and 
the intended auxiliary images. The number of the auxiliary images was 63 
added to the images planned before to have a total set of 175 images as 
shown in Fig. 7.20. 

 
Fig. 7.20: The captured auxiliary images in yellow.  
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Fig. 7.21, to Fig. 7.23 illustrated a comparison between the dense point cloud 
before and after the auxiliary image capture at the detected gap areas. 
 

 
(a) 

 
(b) 

Fig. 7.21: Dense point cloud illustrates the first detected gap in a column. (a) Before 
gap detection. (b) After adding the auxiliary images and modelling. 
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(a)

 
 

 
(b) 

Fig. 7.22: Dense point cloud after the second gap detection. (a) Before gap detection 
and point cloud completeness. (b) After adding the auxiliary images (red) and 

modelling. 
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Fig. 7.23: Dense point cloud illustrates the gap in different parts of the church before 

(left) and after (right) gap detection and point cloud completeness. 
 
The final point cloud after gap detection and auxiliary image capturing is 
illustrated in Fig. 7.24. The point cloud of the facades within the accessible 
camera views were completed. However, clusters of points were missing on 
the higher parts, especially on the tower clock. This was unavoidable because 
of the limited camera altitude from a street level as stated earlier in chapter 
1. Moreover, some small parts near the ground were also missing because of 
the occlusion caused by people parking their bicycles very close to the walls. 
This problem can be avoided for real cultural heritage projects. 
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Fig.7.24: The complete point cloud of the church from a layman camera height. 
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7.7 Summary   
The proposed method of this thesis was tested on a church in Enschede. The 
results show the sufficiency of this method for 3D image based modelling in 
terms of completeness and accuracy. For accuracy validation, internal and 
external tests were conducted. The internal accuracy test was applied by 
checking the RMSE for the GCPs and four checkpoints (Table 7.1). The RMSE 
was 8 mm for GCPs and 16 mm for checkpoints respectively. However, the 
RMSE of 8mm was computed if the largest shift of checkpoint 66 excluded. 
Furthermore, the external validation was conducted on the produced dense 
point cloud compared to a highly accurate reference point cloud produced by 
laser scanning. Three sample point clouds were selected as illustrated in Fig. 
7.16, Fig.7.17 and Fig. 7.18. The mean shift distances in the first two tests 
were 7 mm and 8 mm respectively. However, for the upper parts of the 
church tower, the accuracy was deteriorated to 3 cm.  
 
To complete the model, gap detection was applied as discussed in chapter 6 
for the church point cloud. There were few gap areas detected in the 
produced point cloud. Auxiliary images were taken for every detected gap 
and an improved coverage was attained in the final point cloud as illustrated 
in Fig. 7.21 to Fig. 7.24.  
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Chapter 8. Conclusions and 
recommendations 
This chapter presents the conclusions to the objectives and research 
questions presented in chapter 1 based on the research findings of chapters 
4-7. 

8.1 Conclusions 
An imaging system with an automated camera network design method is 
presented in this thesis. This multi imaging system is developed for the 3D 
modelling of objects like buildings and statues. Accordingly, cultural heritage 
documentation and preservation is a major application area of such a 
technique. The aim was also to enable non professionals to conduct this task.  
The implementation of the proposed method as discussed in the thesis 
chapters resulted in the following conclusions: 
   
- The proposed method proved its efficiency as discussed in the thesis 

chapter 4 through building the optimal camera network. The optimality 
meant to find the minimum number of cameras with the required 
accuracy in the object points. The practicality of capturing the designed 
images was also proposed as discussed in chapter 5 to enable even non-
professionals to successfully create 3D models. The completeness of the 
predicted 3D model was studied in chapter 6 by detecting gaps in the 
point cloud and adding auxiliary images to finalize the necessary photo 
capture. 
 

- For the camera network design step, minimal network computations are 
proposed by using either the requirements of accuracy in the object 
space or the higher coverage requirements. Both methods gave efficient 
results, but with a preference for the method of filtering for accuracy. 
 

- The optimization technique proved the efficiency to converge to a higher 
accuracy criteria if needed. However, careful selection of the camera 
bounds was crucial in convergence. The user is able to select the suitable 
proposed constraints presented in chapter 4 based on the project needs.  
 

- The methodology was based on using a good pre-calibrated camera. This 
is expected to improve the accuracy of the image orientations and the 
produced models.   
 

- The proposed segmentation method in chapter 4 was based on a 2D 
processing of the point cloud. This was not efficient in segmenting all the 
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types of buildings, especially when the roofs are represented in the point 
cloud. 
 

- The automated camera network design is suitable for autonomous 
mapping vehicles like UAVs where the flight time is limited. When, UAVs 
are equipped with a GNSS and an IMU, it can be programmed to realize 
the camera locations and angular orientations of the designed optimal 
network. In this case the guidance by the synthetic images is not needed. 
Accordingly, producing a highly efficient and complete 3D model out of 
these UAV-based images is expected to improve. 
 

- Synthesizing the designed optimal images was very useful for the 
fieldwork to capture their equivalent real images. Some problems were 
found when the SIFT matching between the synthetic images and the real 
images was not successful. Visual inspection was the easiest way to 
overcome such a problem.  
 

- The multi window guided SIFT matching produced promising results for 
the image orientation. Some challenging cases with wide baseline 
imaging have been processed with this technique. Higher number of tie 
points were offered when compared with the conventional technique 
beside reducing the processing time of tie points matching. Moreover, 
some of the state- of- the- art packages were not able to orient the 
imaging network of the church object of chapter 7 while our guided 
approach succeeded. The failure in these packages was either because of 
the repetitive pattern effect or the wide baseline configuration which is 
solved in our approach.   
  

- The automated gap detection technique presented in this thesis was 
efficient to find the incomplete parts of the modelled object. Some 
difficulties were faced when there were real openings or poorly textured 
parts of the object. The detected gaps offered a useful guidance for a 
subsequent image capture to complete the missing parts in the 3D 
model. 
 

- The research was intended for heights between 0.5 to 2 meters that are 
accessible by a layman. This limitation affected the produced 3D models, 
especially in the upper parts and roofs of buildings. Therefore, the 
produced models of building were mainly for their facades. However, this 
limitation can be lifted when using a UAV which offers an accessible fly 
above the buildings and higher parts of objects. 
 

- The proposed gap detection technique based on a 2D image processing 
was less efficient compared to the 3D voxel based technique. However, 
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the voxelization was expensive in terms of computational time and 
computer memory. 

- The effect of occlusions on the completeness of the 3D model and their 
avoidance was not considered.   

8.2 Recommendations 
Based on the discussion and experiments of the proposed imaging technique, 
we can recommend to: 
 
- Use other sources like available CAD models in representing the object to 

design the camera network. This is appropriate in some cases when the 
video based rough model is not applicable.   
 

- Consider more flexibility regarding accessible heights for the camera like 
when using UAVs. This will be more efficient to cover the upper parts and 
roofs of objects. 
 

- Investigate the application of camera self-calibration during the camera 
network design and the subsequent image orientation.   
 

- Apply the point cloud segmentation in three dimensions rather than two 
dimensions for a better camera network design that can accommodate 
for roofs as well.  
 

- Add a tool of gap detection in the state of the art packages of the image 
based modelling. This is by graphically representing the detected gaps by 
voxels as shown in chapters 6 and 7. Such a tool will be very useful for 
users to complete their 3D models, especially on sites with limited 
access, like archaeological sites and museums. 
 

- Improve the camera network design by considering the avoidance of 
occluding objects. This will improve the completeness of the produced 3D 
models. 
 

- Design the proposed imaging system in a real time implementation. This 
is a matter of advanced hardware and software abilities. Moreover, 
programming our method as a smartphone/tablet app will be more 
suitable for the actual fieldwork. 
 

- Use the Least Square Matching (LSM) method in the guided multi window 
matching to refine the localization of the matched SIFT points to sub-
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pixel accuracy. This is expected to improve the image orientation 
accuracy as proposed in (Barazzetti et al. 2010) .   
 

- Support the guided imaging with the necessary instructions that can be 
printed on a screen to give some extra information like the needed 
distance between the object and the camera and/or the 2D imaging 
network plan as shown in the sketch of Fig. 8.1.  

 
Fig 8.1: 2D plan illustration to capture images with the suggested guidance. 

 
This thesis showed that the proposed imaging system is suitable for the 
applications of highly detailed 3D image based modelling in terms of 
automation and practicality. State–of-the–art software can add the developed 
functionalities of camera network design, guidance and gap detection to their 
current components. The proposed interactivity between the camera operator 
and the software will certainly produce the required efficiency of 3D 
modelling. 
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A1- Optimization  
Optimization techniques are used to find a set of design parameters, 𝑥𝑥 =
(𝑥𝑥1, 𝑥𝑥2, … . 𝑥𝑥𝑛𝑛), that can be defined as optimal. In a simple case this might be 
minimization or maximization of some system characteristic that is 
dependent on 𝑥𝑥. In a more advanced formulation the objective function 𝑓𝑓(𝑥𝑥) 
to be minimized or maximized, might be subject to constraints in the form of 
equality constraints, ℎ𝑑𝑑(𝑥𝑥) = 0 (𝑠𝑠 = 1, … . ,𝑎𝑎𝐿𝐿), inequality constraints, 𝐿𝐿𝑑𝑑(𝑥𝑥) ≤
0 (𝑠𝑠 = 𝑎𝑎𝐿𝐿 + 1, … ,𝑎𝑎); and /or parameter bounds, 𝑥𝑥𝑝𝑝 , 𝑥𝑥𝑢𝑢. 
 
The problem that is difficult to solve is the Nonlinear Programming (NP) 
problem in which the objective function and constraints can be nonlinear 
functions of the design variables as in the case of the camera placement 
problem.  
 
The solution of nonlinear unconstrained minimization problem or nonlinear 
least square problem in photogrammetry and computer vision is common and 
crucial when solving the bundle adjustment problem in the orientation 
computations and SfM. This is either to be solved by Levenberg – Marquardt 
LM or by Gauss – Newton methods (K. Madsen et al. 2004). However, the 
constrained minimization is harder to solve from a mathematical viewpoint 
because of constraints that have to be considered in the solution. This 
constrained minimization problem is to be solved by introducing the 
LaGrange multipliers as follows: 
 
𝐿𝐿(𝑥𝑥, 𝜆𝜆) = 𝑓𝑓(𝑥𝑥) + ∑𝜆𝜆𝐿𝐿,𝑑𝑑𝐿𝐿𝑑𝑑(𝑥𝑥) + ∑𝜆𝜆ℎ,𝑑𝑑ℎ𝑑𝑑(𝑥𝑥) (A1) 
 
The vector λ, which is the concatenation of λg and λh , is the LaGrange 
multiplier vector and its length equals the total number of constraints  
It is well known in algebra that the gradient must be zero at a minimum, 
however, for a complicated minimization analogous conditions called Karush-
Kuhn-Tucker (KKT) conditions must be fulfilled to find the optimum solution 
for this problem and guarantee a global optimum (Rao 2009). The KKT 
conditions are stated that: 
 
∇𝑚𝑚𝐿𝐿(𝑥𝑥, 𝜆𝜆) = 0
𝜆𝜆𝐿𝐿,𝑑𝑑𝐿𝐿𝑑𝑑(𝑥𝑥) = 0
𝐿𝐿(𝑥𝑥) ≤ 0
ℎ(𝑥𝑥) = 0
𝜆𝜆𝐿𝐿,𝑑𝑑 ≥ 0 ⎭

⎪
⎬

⎪
⎫

 (A2) 
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It must be noted that LaGrange multipliers λ turn the inequality function into 
equality because it defines a stationary point where the partial derivatives 
are zero. Thus, yields a necessary condition for optimality in constrained 
problems. 
 
The mathematical challenge to solve such kind of problems is mainly in the 
existence of inequality nonlinear constraints as in our case of camera network 
optimization. Different methods are currently used to solve the constrained 
optimization problems like: trust-region, sequential quadratic programming 
(SQP) and interior point techniques (Waltz et al. 2006; Rao 2009).   
 
According to the literature, the approach of interior point has enjoyed great 
success and proved to be effective for a variety of problem classes due to 
their regularization effects to the constraints. Interior-point methods 
according to Curtis (2011) have become the workhorse in large-scale 
optimization due to their Newton-like qualities in terms of scalability and 
convergence performance.  
 
This interior point algorithm is to solve a sequence of approximate 
minimization problems and essentially implemented by using a barrier 
method as follows (Byrd et al. 1999): 
 

𝑓𝑓(𝑥𝑥)𝑚𝑚,𝑠𝑠         
        𝑚𝑚𝑑𝑑𝑛𝑛𝑑𝑑𝑚𝑚𝑑𝑑𝑧𝑧𝐿𝐿 − 𝜇𝜇 ∑ 𝑜𝑜𝑛𝑛 (𝑟𝑟𝑑𝑑)𝑚𝑚

𝑑𝑑=1   
Subject to: 
ℎ(𝑥𝑥) = 0  
𝐿𝐿(𝑥𝑥) + 𝑟𝑟 = 0   (A3) 
 
Where µ is the barrier parameter and where the slack variables s are 
assumed to be positive to keep 𝑜𝑜𝑛𝑛 (𝑟𝑟𝑑𝑑) bounded. As µ decreases to zero, the 
minimum of 𝑓𝑓𝜇𝜇 should approach the minimum of 𝑓𝑓. The inequality constraints 
are approximated to equality constraints by the addition of the slack 
variables to make it easier to solve. To update the unknown parameters 
(camera exterior orientation 𝑥𝑥) and the slack variables s, a step length must 
be determined and added to the initial values of these parameters (𝑥𝑥 + 𝑑𝑑𝑚𝑚 , 𝑟𝑟 +
𝑑𝑑𝑠𝑠) in an iterative way. These steps can be solved either by a direct (linear) 
search or by a conjugate gradient CG technique. At each iteration, the 
algorithm decreases a merit function to determine whether the total step is 
acceptable as shown:  
 
𝑓𝑓𝜇𝜇(𝑥𝑥, 𝑟𝑟) + 𝜈𝜈‖ℎ(𝑥𝑥),𝐿𝐿(𝑥𝑥) + 𝑟𝑟‖ (A4) 
 
Where ν is called merit or penalty parameter. The solution is accepted by 
checking if the attempted step doesn't decrease the merit function, and in 
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that case the algorithm rejects the step and attempt a new step until the 
stopping tolerance satisfied. 
It’s worth to mention that we used the optimization toolbox of Matlab to 
implement this technique through the use of the function (fmincon) (Matlab 
2010). 

A2- Cost function in optimal camera network design  
In this section, we will discuss the formulation of the objective function of the 
optimal camera network. 
As mentioned in chapter 4, the mathematical model is represented by 
collinearity equations, and can be linearized by the first-order development of 
Taylor series. Moreover, with the redundant observations, least square 
method is usually followed to compute the adjusted parameters. This will 
lead to the following observation equation model (Ghilani and Wolf 2006) 
 
𝐴𝐴𝑣𝑣 + 𝐵𝐵∆ = 𝑓𝑓 (A5) 
 
Where 
𝐴𝐴: The matrix of partial derivatives of collinearity with respect to the 
observations. 
𝐵𝐵: The matrix of partial derivatives of collinearity with respect to the 
unknowns. 
𝑣𝑣: The vector of residual errors. 
∆: The vector of corrections. 
𝑓𝑓: The vector of function evaluations. 
 
Accordingly, in this thesis, the objective function is formulated by simplifying 
the normal equation matrix in least squares L.S. adjustment method into two 
groups of parameters. Namely, ∆𝐿𝐿 ,∆𝑠𝑠 represent the corrections to the exterior 
orientations ‘𝑟𝑟’ and the object coordinates ‘𝑟𝑟’ respectively. This yields the 
following weighted L.S. normal equation. 
 

�
[𝐵𝐵𝐿𝐿𝑇𝑇𝑊𝑊𝐵𝐵𝐿𝐿] [𝐵𝐵𝐿𝐿𝑇𝑇𝑊𝑊𝐵𝐵𝑠𝑠]
[𝐵𝐵𝑠𝑠𝑇𝑇𝑊𝑊𝐵𝐵𝐿𝐿] [𝐵𝐵𝑠𝑠𝑇𝑇𝑊𝑊𝐵𝐵𝑠𝑠]� = � 𝑄𝑄𝐿𝐿 𝑄𝑄𝐿𝐿𝑠𝑠

𝑄𝑄𝑠𝑠𝐿𝐿 𝑄𝑄𝑠𝑠
�  (A6) 

 
Where 𝑊𝑊 is the matrix of weights. The designed optimization objective of 
increasing the precision is to achieve an optimal form of  𝑄𝑄s which is the 
covariance matrix of object point coordinates (𝑋𝑋,𝑌𝑌,𝑍𝑍). Consequently, this will 
guarantee the maximum accuracy (Fraser 1989) with the optimal minimum 
number of cameras. This objective function is expressed in equation 4.7 
𝑓𝑓(𝑥𝑥) = min (∑ 𝑄𝑄𝑠𝑠𝑑𝑑  /𝑛𝑛)𝑛𝑛

𝑑𝑑=1  by minimizing the computed average error in (𝑋𝑋,𝑌𝑌, and 𝑍𝑍) 
within 𝑛𝑛 unknown object points, which is computed according to the 
collinearity equations model.  
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Summary 
Image-based modelling techniques are important for producing 3D models in 
a practical and cost effective manner. This modelling starts with designing 
the camera network for the study object. This task is, however, quite crucial 
in practical applications because it needs a thorough planning and a certain 
level of experience. The optimal camera network is designed keeping the 
number of camera shots at a minimum. 
 
In this thesis, we developed an automated method for designing the optimal 
camera network for a given cultural heritage building or statue. Starting from 
a rough point cloud derived from a video image stream, the initial 
configuration of the camera network was designed, assuming a high-
resolution state-of-the-art non-metric camera. The procedure is based on 
reducing a dense simulated camera network. To improve the image coverage 
and accuracy, we used a mathematical non-linear optimization with 
constraints. The objective function of the optimization is based on minimizing 
the average error in the object space. From the experimental tests in chapter 
4, we found that the target accuracy could be maintained with a minimal 
number of images. For the case study in chapter 7, the camera network 
design with a required accuracy of 10 mm is maintained from 118 images. 
 
Furthermore, synthetic images are created to guide the camera operator to 
the locations where the images are to be taken. These synthetic images are 
created by retrieving the rough 3D model that has been produced from video 
imaging in the first step of design. Afterward, the real captured images are to 
be captured in the field in an iterative way for the whole block of images.   
 
Then, image orientation is followed to finally generate the final 3D model. 
Accurate image-based models can be created as long as precise image 
calibration and orientation information are retrieved. The first step for 
orientation is to have sufficient correspondences across the captured images. 
Matching SIFT keypoint descriptors is a successful approach for finding these 
correspondences. The extraction of precise image correspondences is crucial 
for the subsequent image orientation and image matching steps. After the 
extraction of a sufficient and reliable set of image correspondences, a bundle 
adjustment is used to retrieve the image orientation parameters.  
 
In this thesis, camera network design results in a combined set of short and 
wide baseline high resolution images covering an object of interest. 
Moreover, the design includes an approximation of image orientations, a 
rough 3D object geometry and image connectivity matrix indicating for each 
image its matching mates. The subsequent image matching is based on the 
contribution on the pre-knowledge of the image orientations and the pre-
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created rough 3D model of the study object. Ultimately, the matching 
information retrieved during that step will be used for a bundle block 
adjustment.  
 
Since the initial image orientation is defined in the design of the camera 
network, we can compute the image connectivity matrix beforehand. For 
each image involved in several pairs defined in the connectivity matrix, the 
keypoints are extracted. Then, its correspondences in the matching 
connected images are transformed by using the designed orientation and 
initial 3D model. Moreover, a window is defined for each keypoint and its 
initial correspondence in the matching images. A SIFT matching is 
implemented between every matching window to find the homologous points. 
This is followed by a bundle adjustment to orient the images automatically to 
finally have a sparse 3D model. The developed approach provided a sub-pixel 
accuracy and effective orientation when compared to the results of 
commercial and open source software which does not exploit the pre-
knowledge about the scene. 
 
The produced 3D model after the image orientation is to be tested whether 
some gaps are exits. The presented technique in chapter 6 is based on a 
voxelization approach. The empty voxels are tested for visibility from the 
captured images and an assumption is made to label them as potential gaps. 
A 3 by 3 neighbourhood filtering is also suggested for refinement and final 
gap detection. Subsequently, auxiliary images should be captured iteratively 
to cover the detected gap areas and a new 3D model is created as shown in 
chapter 7.   
 
The developed method is aimed for cultural heritage, this will contribute to 
driving the development of practical, easy-to-implement digital imaging, 3D 
modelling and preservation solutions. 
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Samenvatting 
Beeldgebaseerde modelleringstechnieken zijn belangrijk voor het op een 
handige en kosteneffectieve manier produceren van 3D modellen. Deze 
modellering begint met het ontwerp van een cameranetwerk rondom het 
object dat gemodelleerd dient te worden. Deze taak is heel belangrijk in 
praktische toepassingen, omdat het een grondige planning en een zekere 
mate van ervaring vereist. Het optimale cameranetwerk wordt ontworpen 
terwijl het aantal cameraposities beperkt wordt gehouden. 
 
In dit proefschrift hebben we een geautomatiseerde methode ontwikkeld voor 
het ontwerpen van het optimale cameranetwerk voor het modelleren van 
cultureel erfgoed, in het bijzonder gebouwen en standbeelden. Uitgaande van 
een ruwe puntenwolk, die is afgeleid uit videobeelden, wordt een eerste 
cameranetwerk ontworpen voor opnamen met een hoge-resolutie state-of-
the-art niet-metrische camera. De procedure is gebaseerd op het reduceren 
van een gesimuleerd netwerk met zeer veel camera’s. Ter verbetering van de 
overlap tussen de beelden en de nauwkeurigheid gebruiken we een 
wiskundige niet-lineaire optimalisatie met voorwaarden. Doelstelling hierbij is 
de gemiddelde fout in de objectruimte te minimaliseren. Uit de experimenten 
in hoofdstuk 4 bleek dat de beoogde nauwkeurigheid met een minimaal 
aantal beelden kon worden behaald. Voor de casestudy in hoofdstuk 7 wordt 
het ontwerp van het cameranetwerk met een vereiste nauwkeurigheid van 10 
mm behaald met 118 beelden.  
 
Verder worden synthetische beelden gemaakt om de fotograaf te leiden naar 
de plaatsen waar de beelden moeten worden opgenomen. Deze synthetische 
beelden worden gegenereerd met behulp van het ruwe 3D-model dat uit de 
video-opnamen in de eerste fase van het ontwerp is afgeleid. Daarna worden 
iteratief voor het hele blok de echte opnamen in het terrein genomen.  
 
Vervolgens worden de beelden georiënteerd om het uiteindelijke 3D-model te 
kunnen genereren. Nauwkeurige beeldgebaseerde modellen kunnen worden 
gereconstrueerd wanneer de camera’s gekalibreerd en de cameraoriëntaties 
bepaald kunnen worden. De eerste stap voor de oriëntatie is om voldoende 
corresponderende punten tussen de gemaakte foto's te bepalen. Het matchen 
van SIFT key points is een succesvolle aanpak voor het vinden van deze 
punten. De bepaling van de precieze locaties van corresponderende punten is 
cruciaal voor de daarop volgende beeldoriëntatie en image matching. Na het 
inwinnen van een voldoende omvangrijke en betrouwbare set van 
corresponderende punten wordt een stralenbundelvereffening gebruikt om de 
oriënteringsparameters te bepalen.  
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In dit proefschrift resulteert het ontwerp van een cameranetwerk in een set 
van hoge-resolutie-beelden met zowel korte als lange basislijnen die het te 
modelleren object afdekken. Bovendien levert het ontwerp benaderde 
waarden van de beeldoriëntaties, een ruw 3D model en een matrix die 
aangeeft welke beelden met elkaar overlappen. De daarop volgende image 
matching maakt gebruik van de voorkennis van de beeldoriëntaties en het 
vooraf gemaakte ruwe 3D model van het object. Uiteindelijk worden de 
resultaten van de image matching gebruikt in de bundelvereffening.  
 
Omdat de initiële beeldoriëntaties zijn gedefinieerd tijdens het ontwerp van 
het cameranetwerk, kunnen we de matrix met de overlapindicatie van de 
beelden vooraf berekenen. Voor elk beeldpaar dat volgens deze matrix een 
overlap vertoont worden de key points bepaald. Vervolgens worden de 
corresponderende punten in de overlappende beelden getransformeerd met 
behulp van de beeldoriëntatie uit het ontworpen netwerk en het eerste 3D-
model. Bovendien wordt een venster gedefinieerd voor elk key point en de 
corresponderende locatie in de overlappende beelden. Een SIFT matching is 
geïmplementeerd tussen elk paar van corresponderende vensters om de 
corresponderende punten te vinden. Dit wordt gevolgd door een 
bundelvereffening om de beelden automatisch te oriënteren en eindelijk een 
3D model te bepalen. De ontwikkelde aanpak voorziet, in vergelijking met de 
resultaten van commerciële en open source software die de voorkennis over 
de scène niet te benutten, in een sub-pixel nauwkeurigheid en een effectieve 
oriëntatieberekening. 
 
Het na de beeldoriëntatie geproduceerde 3D-model moet worden getoetst op 
gaten. De in hoofdstuk 6 beschreven techniek is gebaseerd op een 3D 
rasteraanpak. Voor de lege rastercellen worden getoetst of ze zichtbaar zijn 
in de opgenomen beelden. Onder bepaalde aannames worden deze cellen als 
potentiële gaten aangemerkt. Filtering met een 3x3 venster wordt 
aanbevolen voor een verfijning en de uiteindelijke detectie van gaten. 
Vervolgens worden iteratief extra beelden opgenomen om de gevonden gaten 
af te dekken en een nieuw 3D model te produceren (hoofdstuk 7).  
 
De ontwikkelde methode is bedoeld voor de documentatie van cultureel 
erfgoed. De methode zal dit bijdragen aan de verdere ontwikkeling van 
praktische en eenvoudig te implementeren oplossingen voor digitale 
beeldopname, 3D modellering en het behoud van cultureel erfgoed. 
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